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ABSTRACT

Pointers (arrows and symbols) are frequently used in biomedical images to highlight specific image regions of
interest (ROIs) that are mentioned in figure captions and/or text discussion. Detection of pointers is the first
step toward extracting relevant visual features from ROIs and combining them with textual descriptions for a
multimodal (text and image) biomedical article retrieval system.

Recently we developed a pointer recognition algorithm based on an edge-based pointer segmentation method,
and subsequently reported improvements made on our initial approach involving the use of Active Shape Models
(ASM) for pointer recognition and region growing-based method for pointer segmentation. These methods
contributed to improving the recall of pointer recognition but not much to the precision. The method discussed
in this article is our recent effort to improve the precision rate. Evaluation performed on two datasets and
compared with other pointer segmentation methods show significantly improved precision and the highest F1

score.
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1. INTRODUCTION

Biomedical images are critical in establishing diagnoses, acquiring technical skills, implementing best practices
for education, and many other areas of medicine. This has drawn attention toward developing retrieval engines
for biomedical images and articles and on related research topics [1]. Most retrieval approaches are text-based,
extracting relevant information from citations, figure captions, and/or text discussion. Visual content extracted
from images has also been recently used to achieve better retrieval. Most of the approaches that show improve-
ment, however, use visual content combined with text information, since visual content alone is inadequate due
to the “semantic gap” reported in the literature [2].

In [3] we proposed a new article retrieval approach as a potential solution to improve techniques based on
conventional text or content-based image retrieval (CBIR). We focus on local image regions of interest (ROIs)
instead of the entire image based on our hypothesis that local image regions indicated by pointers (arrows
and symbols) may contain more relevant information than other regions in the image. Toward developing the
approach, we developed algorithms that recognize various overlaid pointers in biomedical images and identify
their corresponding ROIs [3–5].

Recently we reported preliminary results of our ongoing research effort on building a visual ontology for a
biomedical retrieval system [6], which utilizes pointers and ROIs in biomedical images. In the proposed system,
pointers are detected and their corresponding ROIs are then linked with textual concepts extracted from figure
captions by combining rule-based and statistical natural language processing techniques. Textual information
includes type of pointers (“arrows”, “arrowheads”, “asterisks”, etc.), pointer attributes (color, size, plural, etc.),
and descriptions of the ROIs. The pointer recognition algorithm proposed in [3] was applied to automatically
extract visual ROIs from images.

A key improvement necessary in our methods was in the precision of pointer recognition. Low precision (high
false positive) made it difficult to select the true pointer(s) and pair them with correct textual concepts. Here we
report on our success in improving the precision by a new pointer segmentation algorithm. Previously, our MRF-
based recognition algorithm [3] achieved an average of about 80% recall but much lower precision (about 25%),
when it is combined with our edge-based segmentation [4]. Subsequent algorithms incorporate noise removal,



but they yield very minor improvement. Recently we applied thresholding-based pointer segmentation in [7],
which achieved better precision but lowered the recall than our edge-based segmentation. Our primary goal in
this research is to achieve higher precision while retaining the high recall of our edge-based method.

The remainder of this article is organized as follows. Section 2 provides a summary of our prior pointer
segmentation methods. Section 3 describes our new method, and evaluation results and discussion are given in
section 4. Section 5 provides conclusions and discusses future work.

2. PRIOR WORK

Our previous pointer segmentation methods utilized both pointer boundary contour and body region. Our
observation identified two general pointer properties; pointers generally have i) sharp contour edges and ii)
homogeneous body intensity. We developed an edge-based segmentation method to take advantage of the first
property. Our edge-based method that applies edge detection (e.g., Roberts, Sobel, or Canny operators) first
and then binarizes the edge image by adaptive thresholding produces fairly clear pointer boundaries and shows
robust performance; however, it sometimes fails to segment pointers with weak edges and the failure eventually
results in recognition failure. Figure 1(b) shows an example pointer with weak edges. The pointer seems to have
clear boundary, but the circled boundary part has relatively lower edge intensity than other part and disappeared
in the final result.

Our next method utilized the second property and tried to segment a homogeneous intensity area by region
growing from seed regions found by the edge-based segmentation. This method attempted to amend distorted
pointer boundaries detected by the edge-based segmentation. It achieved higher precision and recall than edge-
based segmentation; however, computation time was dramatically increased due to the region growing.

Cheng et. al. [7] segmented arrow candidates by global thresholding-based method followed by edge detection.
A global threshold was computed by Otsu’s method and edge detection and several preprocessing were performed
to eliminate noisy candidates. This approach showed slightly lower recall but achieved significant improvement in
precision compared to our edge-based method. One drawback of this method is that it fails to segment pointers
with gray intensity less than the global threshold which is obtained by taking a greater value between Otsu’s
threshold and a fixed value (e.g., 200 ). Such pointers often have high contrast boundary edges and hence may
be successfully segmented by considering edge features.

(a) Ideal result

(b) Broken (touching) boundary (c) Distorted boundary

Figure 1. Examples of detected pointer boundary contour

3. METHOD

In this article a new pointer segmentation method is proposed to solve several drawbacks of our prior work and
address the reported challenges in pointer segmentation. Obtaining a good quality single contour for each pointer



is another goal of the proposed method. Our prior edge-based method produces two separate contours (Figure
1(a)). In case those two are touching or severely distorted, neither of them can be used for recognition. Figure
1 (b) and (c) show samples of such cases, respectively.

Figure 2 depicts our proposed method. It has two separate paths to detect pointer candidates from pointer
boundary contours and body regions. Then the two results are merged to find concrete candidates and threshold
values for final pointer segmentation. Color images are converted to 8-bit grayscale images by an equation
discussed in [4].

Figure 2. The proposed pointer segmentation method

3.1 Pointer candidate detection by boundary detection

Our prior work showed a weakness in detecting pointers with weak edges, resulting in broken boundaries. This
is shown in Figure 1(b) where most of the boundary parts are well detected while a small portion is missing.
Different thresholding values or methods or applying any post-processing to amend broken boundaries could be
a good solution for this sample; however, eventually we may not be able to avoid broken boundary problem
through any edge- or binarization-based approaches. It is our observation, however, that even though edge-
based segmentation may be weak, it is still a powerful method for pointer boundary segmentation and it is worth
considering post-processing methods to overcome this weakness.

Instead of applying adaptive thresholding to the edge detection output (Figure 3(b)), we use a global threshold
to obtain a binary image (Figure 3(c)). This may result in more broken boundaries than obtained by adaptive
thresholding; however, our main goal here is to detect evident (entire or partial) pointer boundary candidates
by finding high intensity pixels in edge images. In order to enhance detection, image sharpening (a high pass
filter) is applied to the input image [8]. Figure 3(c) shows binarization result of the edge image of the input
by threshold 220. As shown, most of the pointer boundary is detected. Outer contours of the white connected
components (CC) are then extracted as pointer boundary candidates by using the contour extraction function
in OpenCV [9].

3.2 Pointer candidate detection by body detection

Most pointers overlaid in biomedical images have a body consisting of pixels of similar gray intensity (i.e., solid
pattern). Detecting regions of homogeneous intensity could be a good start for pointer body detection. To this
end, we apply a lower threshold (such as 50 ) to the edge image to detect regions with small edge magnitudes.
Such regions mostly consist of pixels with similar intensity and their textures would be close to a solid pattern.
In Figure 3(d) that is obtained by thresholding the edge image by 50, black pixels represent regions satisfying
the above condition.

Here another important condition needs to be considered to detect a pointer body from the binarization
result shown in Figure 3(d). In the result white pixels correspond to pixels with abrupt intensity changes and
they are in boundaries between any two distinct regions (in color) such as gray and black regions or pointer
and background in the input. Hence detecting a black CC within (or surrounded by) a white CC can eliminate



most of the noisy regions that satisfy the first condition but are not true pointer bodies. Figure 3(f) shows only
four contours of candidate pointer body regions. Most of the black pixels in Figure 3(d) consist of the largest
background region that is not surrounded by white pixels and hence excluded as noise.

(a) Input (b) Sobel edge detection result

(c) Thresholding result by 220 (d) Thresholding result by 50

(e) Detected pointer boundary candi-
dates

(f) Detected pointer body candidates
contours

(g) Overlap regions (h) Final local thresholding result

(i) Detected boundaries by prior
method

Figure 3. Intermediate result images of our new pointer segmentation method

Our proposed boundary and body detection methods are not greatly affected by pointer color itself since
binarization is performed on the edge image where only sharp changes in pixel intensities (or brightness) in an



input image are captured. Those changes (edges) are mostly captured in the pointer boundaries but not in the
pointer body and hence pointer color is not a critical factor. Pointers can be successfully detected as long as their
body has clearly separable gray intensity from background, which is a common property of overlaid pointers in
biomedical images.

3.3 Overlap region detection

As shown in Figure 3(e) and 3(f), one result has broken pointer boundary and another one has several noisy
contours. Our previous edge-based method detected similar results with the body detection result in Figure 3(f),
as shown in Figure 3(i). The arrow could be recognized by the inner contour, however, none of the detection
results are satisfactory.

We observe that in the intermediate contour detection results there exist regions that can be found from both
pointer boundary and body detection results. To be found in both results, a region should have both clear (high
contrast) boundary and homogeneous intensity region surrounded by the clear boundary, which is a condition
that satisfies both the aforementioned two ideal pointer properties. Candidates that satisfy only one condition,
however, may not always be true pointers. Hence combining the two detection results and finding overlap regions
could be an optimal solution to find true pointers with less noise.

In order to find overlap regions, we may simply compare bounding boxes of pointer boundary and body
candidates (Figure 3(e) and 3(f)) and examine the overlap regions. Instead we scan each pixel in each row to
find not only potential pointer region but also average intensity value of the region. This value is used as a
threshold later to binarize the local candidate region to obtain a pointer contour. Figure 4 depicts our detection
method. Assume that two contour images (Figure 3(e) and 3(f) in this example) are combined and contour points
are distinguishable by their contour identification numbers (for example, pixel intensity values 10 and 11 for
boundary and body contour points in Figure 4, respectively). In each scan line, the first and last contour points
of pointer boundary or body contours can be identified as shown by solid and dotted arrows, respectively. Then
pixels between the two points are counted to compute pointer area, and gray intensity of each pixel is examined
to compute average gray intensity of pointer body region. This method, however, sometimes includes pixels
outside the pointer body as shown in Figure 3(g). Those noisy pixels may affect the accuracy of the obtained
average pointer intensity value; however, in most cases they do not ruin the detected pointer region bounding
boxes (overlaid dotted rectangle in Figure 3(g)). Pixels surrounded by the pointer boundary and body contours
(more precisely, pixels between any two boundary or body contour pixels in each row) are considered separately
and two average intensity values are obtained. An average of the two average threshold values is used to binarize
the local region examined. Figure 3(g) shows examined pixels for overlap region detection and threshold value
computation.

Figure 4. Illustration of overlap region detection

3.4 Local region binarization and pointer contour extraction

The threshold value obtained in section 3.3 can be assumed as pointer intensity (color) and used as a threshold
value for binarization of the local region to segment a pointer from background. Some marginal space (e.g.,



20 pixels) is added to the outside of the detected region (e.g., dotted line box in Figure 3(g)) and local region
binarization is performed on the final region. Figure 3(h) shows local binarization result and as shown in the
result a single clear pointer boundary is obtained. A local region may have several contours besides a true pointer
boundary, and in such cases the largest and center-located contour is selected as a pointer boundary. Compared
to the prior result shown in Figure 3(i), the new method extracts only one pointer boundary and the boundary
quality is even better than before.

4. EVALUATION

4.1 Test setup and evaluation method

Two subsets of ImageCLEF2010 [10] dataset are used for evaluation. Set 1 contains chest CT images and it
was used for the evaluation in [6]. Set 2 contains various image modalities (e.g., CT, MRI, Ultrasound, etc.)
and images were randomly selected from the entire dataset. All images in the two sets contain one or multiple
pointers. Ground truth of the pointers was created and it includes various items of information such as pointer
type, color, location, and pointing direction.

Two pointer segmentation methods are considered for performance comparison. One is our edge-based method
proposed in [4] and the other is Cheng’s method discussed in [7]. We first apply each segmentation method to the
datasets and then feed the output contours to our pointer recognition algorithm. All methods perform several
rule-based filtering methods to eliminate small noisy candidates (e.g., minimum candidate area, contour length,
bounding box size, etc.). This evaluation scheme could be fairly reasonable since segmentation result itself is
not a final output but an input to the recognition algorithm. A segmentation result that produces a better
recognition result than others can be assumed the better one.

Another evaluation is performed to evaluate the effect of pointer segmentation algorithm on ROI annota-
tion. Two recognition results obtained from Set 1, viz., edge-based and the proposed segmentation methods,
are provided to the textual and image ROI pairing algorithm discussed in [6] and the accuracy is compared.
The algorithm automatically pairs recognized pointers from images with textual pointers (e.g., “white straight
arrows”, “arrowheads”, etc.) extracted from image’s figure captions. By such a pairing process, extracted image
ROIs can be automatically annotated with accurate text descriptions.

Table 1. Evaluation results of pointer segmentation methods

Set
Pointer segmentation Number of pointers Precision Recall F1

method Ground truth Detected Detected True (%) (%) Score

Set 1
Cheng’s method [7]

1,049
958 777 81.1 74.1 0.77

Edge-based method [4] 3,583 816 22.8 77.8 0.35
Proposed method 1,017 856 84.2 81.6 0.83

Set 2
Cheng’s method

3,162
2,955 2,267 76.7 71.7 0.74

Edge-based method 10,504 2,758 26.3 87.2 0.40
Proposed method 2,997 2,593 86.5 82.0 0.84

Table 2. ROI annotation results

Segmentation method Total detected Successfully annotated Precision (%) Recall (%) F1 score
Edge-based segmentation 854 686 80.3 65.4 0.72
Proposed segmentation 856 825 96.4 78.6 0.87

4.2 Evaluation results and discussion

Precision, recall, and F1 score are computed for the performance metric. Total number of images and pointers
in Set 1 and Set 2 are 298/1,049 and 1,423/3,162, respectively. Table 1 shows the evaluation results.



The proposed method achieved the highest F1 and precision on the two sets and the highest recall on the
Set 1, but the second highest recall on the Set 2. The improvement in precision compared to our prior edge-based
method can be explained as follows. Edge-based method generates more candidates from edge image by adaptive
thresholding, which enables weak edges, for example edges with intensity of 128, to be detected as candidates,
and the increased candidates result in the low precision. One benefit of the adaptive thresholding could be the
higher recall rate. Global thresholding-based methods, both our proposed and Cheng’s methods, on the other
hand, consider only highly probable candidates and hence can achieve higher precision but slightly lower recall.
Our additional experiment using much lower threshold (128 ) for pointer boundary detection on the Set 1 (the
result is not shown in Table 1) showed about 3% improved recall but about 15% lower precision than the result
in Table 1.

Compared to Cheng’s method, our proposed method achieved better precision and recall on both test sets.
A drawback of Cheng’s method may be found in the global thresholding. Pointers with smaller intensity than
the global threshold are eliminated even though they have high contrast edges for edge detection. Our method
can detect such pointers by using edge features, producing better precision and recall.

Table 2 shows that our proposed segmentation method improves ROI annotation performance as well. Both
segmentation methods produced similar numbers of detected pointers after each recognition result was combined
with textual ROIs. However, recognition result using our new segmentation method outpeformed the result using
old segmentation by about 16% and 13% in precision and recall, respectively.

One weakness of our new method is that it may not be able to completely solve the weak edge problem.
Figure 5 shows an example that was not segmented by the new method. The edge-based method successfully
segmented the pointer since as shown in Figure 5(b) entire pointer boundary has clearly brighter intensity than
other region, and adaptive thresholding could separate the pointer boundary from the background as shown in
Figure 5(c). Our new method, however, failed since the entire boundary has edge intensity smaller than 220.
The result in Figure 5(d) shows binarization result by threshold 160, which is much smaller than 220, but the
segmentation quality is still poor.

(a) Input (b) Edge detection (c) Adaptive thresh-
olding

(d) Detected bound-
ary by threshold 160

Figure 5. An error case due to overall weak edge

(a) Input (b) Edge detection (c) Detected body touching the
background

Figure 6. A pointer with similar body and background color

Figure 6 shows another example, which is a more challenging case. In the dotted circle in Figure 6(a), pointer
body and background have very similar intensity, and it is hard to separate them by convential thresholding-
based methods. Unlike the arrow shown in Figure 1(b) that has similar partial weak edge but has perfectly



separable body region, our algorithm could not separate the pointer body from the background (see the touching
pointer body and background in the dotted circle shown in Figure 6(c)) and hence failed in recognition.

(a) (b) (c)

Figure 7. Samples of open arrows

Figure 7 shows samples of open arrows that are not always successfully detected due to their clear (trans-
parent) body. Most open arrows have high contrast pointer boundary, which is one necessary condition for
successful segmentation, and hence segmentation result depends on the pattern of the background underneath.
For example, the pointer in Figure 7(a) can be successfully segmented since the background is similar to a pointer
body of a bright solid pattern. However, the open arrow in Figure 7(b) has background of several texture regions,
none of which is sufficient to be detected as pointer body. Figure 7(c) is a case that can rarely be segmented by
our method. The pointer body is touching the background and hence the body detection algorithm fails in most
such cases.

5. CONCLUSION

A new method for robust pointer segmentation in biomedical images is presented in this article. Our research
effort was focused on enhancing the performance of our previous segmentation methods. Our prior edge-based
approach achieved around 80% recall but much lower precision. Improving the precision rate is important to
achieve better retrieval results in our system that utilizes local image regions of interest (ROI) to search for
relevant images.

We combined fundamental ideas in our prior edge- and region-based segmentation methods to exploit each
method’s strength and overcome its weakness. Positive pointer boundary candidates are detected by a similar
but slightly modified edge-based method. Adaptive thresholding in the edge-based method is replaced with a
global thresholding. This may generate more broken boundaries; however, it reduces noisy boundaries effectively,
which is the first step toward achieving better precision rate. Pointer body region is detected by another global
thresholding applied to the edge detection result. This approach is similar to our region-based method that
expands a seed region to segment homogeneous intensity blobs (potential pointer regions) but much faster than
the region growing approach. The two results (detected pointer boundaries and body regions) are then combined
to filter out noisy candidates and localize potential pointer regions. Local pointer candidate regions are then
binarized by a threshold computed in the combining step, and the final pointer contours are extracted from the
binarized local regions.

The proposed method solved several challenging problems that our previous methods could not handle.
Broken boundary problem is one of them and solved by thresholding the local pointer region by accurate pointer
body color. Low precision could be solved by applying strict conditions that reflect common pointer properties
in the candidate detection steps. An additional benefit of the new method is that it provides a single pointer
contour. As shown in Figure 1, the edge-based method extracts two contours. In ideal cases both contours are
useful for recognition. However, besides the two problematic cases shown in Figure 1, in case recognition results
of each boundary are different for any reasons, it is difficult to select one as the final result. We also observed
that the new method provides cleaner and smoother contours than the edge-based approach, which can help
achieve better recognition accuracy. Preliminary result on ROI annotation test shows that the new segmentation
method leads to better ROI annotation performance as well.

Our new segmentation method still needs to be improved for better performance. Cases where pointers have
weaker edges than a threshold are on top of the list. Pointers that have a color similar to the background offer



significant challenges. Potential solutions could be found in methods for occluded object detection or approaches
handling image pixels in a more granular way than conventional thresholding-based approaches.
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