
Open World Active Learning for Echocardiography View
Classification

Ghada Zamzmi*a, Tochi Oguguo*a, Sivaramakrishnan Rajaramana, and Sameer Antania

aComputational Health Research Branch, National Library of Medicine, National Institutes of
Health, Bethesda, MD, USA

ABSTRACT

Existing works for automated echocardiography view classification are designed under the assumption that the
views in the testing set must belong to a limited number of views that have appeared in the training set. Such a
design is called closed world classification. This assumption may be too strict for real-world environments that
are open and often have unseen examples, drastically weakening the robustness of the classical view classification
approaches. In this work, we developed an open world active learning approach for echocardiography view
classification, where the network classifies images of known views into their respective classes and identifies
images of unknown views. Then, a clustering approach is used to cluster the unknown views into various groups
to be labeled by echocardiologists. Finally, the new labeled samples are added to the initial set of known views
and used to update the classification network. This process of actively labeling unknown clusters and integrating
them into the classification model significantly increases the efficiency of data labeling and the robustness of
the classifier. Our results using an echocardiography dataset containing known and unknown views showed the
superiority of the proposed approach as compared to the closed world view classification approaches.
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1. INTRODUCTION

Echocardiography is a common medical examination that uses high-frequency ultrasound waves to visualize the
size and shape of different cardiac regions.1 A comprehensive echocardiography examination involves imaging the
heart in three main modes (Doppler, M-mode, and B-mode) and from different planes and orientations (views).
Each echocardiography study contains up to a few hundred echocardiograms acquired to assess the function of the
heart’s chambers and valves.1 The first step to ensure an accurate interpretation of echocardiograms is to identify
the desired cardiac view from a list of all modes and views.1 This step is time-consuming and non-trivial as
several views differ only subtly from each other. Therefore, computational methods for echocardiography views
identification have become an ideal solution for speeding up clinical workflow and obtaining fully automated
echocardiogram interpretation in clinical practice.

1.1 Related Work

Several methods can be found in the literature2–7 for echocardiography modes and views classification. We divide
these methods, based on the environment or setting, into closed world and open world methods. Closed world
methods are designed for a static environment, which means the classifier is designed under the assumption that
all test classes (views) are known (or seen) at training time. All existing methods for echocardiography view
classification belong to this group of methods. These conventional methods use classical machine learning (e.g.,
support vector machine [SVM]) or deep learning (e.g., convolutional neural networks [CNNs]) techniques with
datasets containing limited sets of known echocardiography views. For example, Wu et al.3 presented one of
the first conventional methods for classifying echo images into eight views including parasternal long-axis view
(PLAX) and apical 4 chambers (A4C). Their method extracts spectral energy features from the images using
a GIST descriptor. These features are then used to train a SVM for classification. Other methods use SVM
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with handcrafted descriptors such as Scale-invariant feature transform (SIFT),2 histogram of oriented gradients
(HOG),4 and bag of visual words (BoWs).5 Recent works for echo view classification use state-of-the-art CNNs
such as VGG8 and ResNet.9 For example, Zhang et al.6 used a VGG-based model to classify echo images
into 23 views including PLAX and A4C. Similarly,7 used a VGG-based method for view classification. Their
method classifies echo images into 3 modes: B-mode (12 views), M-mode, and Doppler (2 views). We refer the
reader to10,11 for comprehensive reviews of existing methods for mode and view classification. Although the
classical computational methods have already achieved significant success in mode and views classification, these
methods are only limited to the known classes (views) that have been learned during training. This drastically
weakens their robustness when deployed in open-world settings with unknown or unseen views. Further, obtaining
sufficient training data for all cardiac views is challenging due to the lack of training datasets that contain all
cardiac views (> 15 views) and subviews (e.g., parasternal short axis view alone has > 5 subviews). Since the
current classical view classification methods randomly classify unknown views as one of the known views learned
during training, there is a need for a robust open world classifier that labels images of known views into their
respective classes while actively recognizing unknown views and learning them (open world active learning).
While open world learning has been studied in a variety of machine learning tasks, this approach has not been
explored with echocardiography classification. In fact, we are not aware of any work that utilizes open world
active learning with medical ultrasound imaging applications, including echocardiography images.

1.2 Contribution

In this work, we propose an open world active learning framework for echocardiography view classification.
Specifically, we frame echocardiography view classification as an open set learning problem, where known views
are correctly classified into their respective classes and unknown views are labeled as unknown. We train the open
world classifier using an initial dataset with known views. To actively update the initially trained open world
classifier, the set of unknown views is grouped into different clusters using a clustering algorithm. Then, each
cluster is labeled by an echocardiologist into their respective views. Finally, the new labeled views (previously
unknown) are added to the initial set of known views and used to update the open world classifier. This allows
the use of an initial classifier trained with a relatively limited amount of labeled views while actively recognizing
new views (unknowns) that it has not seen before and learning them incrementally to become more and more
knowledgeable about the cardiac views. To the best of our knowledge, this work is the first to propose an open
world active learning framework for echocardiography view classification.

The rest of this paper is organized as follows. Section 2 provides technical background including definitions
of open world, closed world, and cluster-based active learning. Section 3 presents the datasets utilized in this
work as well as the proposed framework for open world and active echocardiography view classification. Section
4 presents our experimental results followed by the conclusion and discussion of future directions in Section 5.

2. BACKGROUND

2.1 Closed vs Open World Classification

Although machine learning-based techniques achieved high performance on several visual recognition tasks in-
cluding image classification12,13 and segmentation,14,15 the majority of these methods are designed to only learn
images belonging to a predefined set of classes given before training (closed world setting). Mathematically, a
traditional closed world classifier is trained with Dtrain = {(xi, yi)}Ni=1 and tested with Dtest = {(xi, yi)}Mi=1,
where xi ∈ RD and yi ∈ Y = {1, 2, ..C} is a finite set of predefined classes. In closed world setting, we assume
that both Dtrain and Dtest are drawn from the same distribution, and the classifier is trained using Dtrain to
minimize an empirical loss function such as cross-entropy.16 This loss function is optimized to discriminate
between known classes. Finally, the trained closed world classifier is tested using Dtest to label a new image as
one of the known classes in Y .

Although the closed world assumption holds in several applications, the majority of real world applications
are dynamic and open containing examples from classes that might not appear in training.17 In such a setting, a
closed world classifier would classify an unseen example as one of the known classes. Since the cost of randomly
misclassifying an unseen image to a known class can be high, especially in clinical practice, there is a need to design
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robust classifiers for open world settings. In such setting, the classifier is still trained using Dtrain = {(xi, yi)}Ni=1,
where xi ∈ RD. However, Dtest = {(xi, yi)}Mi=1 has a set (Y ) containing predetermined classes and unknown
classes; i.e., yi ∈ Y = {1, 2, ..C, C + 1}), where C represents the known classes and C + 1 represents the new
classes. Similar to the close world classifier, the open world classifier is trained to minimize a loss function (e.g.,
cross-entropy) with an overall aim to recognize known classes and reject unknown classes or classify them as
C + 1.

2.2 Deep Open Classification

Open world learning has been integrated into convolutional neural networks (CNNs) to create robust deep open
classification (DOC) models.18–21 In,18 Shu et al. integrated open-world learning into CNNs by employing a
1-vs.-rest layer. This layer uses Sigmoid activation functions and Gaussian fitting to classify known classes while
rejecting unknown classes. It has N Sigmoid functions for N seen classes; it rejects unseen classes based on
thresholding (ti) as follows:

18

y =

{
reject, if Sigmoid(xi) < ti, ∀ ci ∈ Y

argmaxci∈Y Sigmoid(xi), otherwise
(1)

where Sigmoid(xi)is the function of a class ci. We reject a given test example (xi) if all predicted probabilities
are less than their corresponding thresholds for that example; otherwise, the class with the highest probability
is predicted.

Although DOC has been widely used for open world deep learning classification, other methods have been
used. For example, a simpler approach would be using thresholds on the Softmax output; i.e., a given input
image is labeled as unknown if none of the classes reaches a predetermined threshold. The performance of this
approach is sensitive to the threshold, which has to be estimated empirically from the training dataset. Another
method that has been widely used to integrate open world learning into CNNs is OpenMax.20 In this method,
the traditional Softmax layer is extended to predict unknown classes using the likelihood of failure and the
concept of meta-recognition.22 To estimate if the input is unknown or ”far” from known classes, the scores from
the penultimate layer of CNNs (i.e., fully connected layer) are used. Then, inputs that are far (in terms of
distribution) from known classes are rejected. One limitation of OpenMax is that it requires validation examples
from the unseen class for hyperparameters tuning. However, the 1-vs.-rest Sigmoid layer provides a representation
of all classes (known and unknown classes). Previous studies21 showed that 1-vs.-rest layer achieved superior
performance as compared to both Softmax thresholding and OpenMax. In this work, we investigate these three
approaches, namely Softmax thresholding, 1-vs.-rest layer, and OpenMax, for open world echocardiography view
classification.

2.3 Cluster-Based Active Learning

Although supervised learning methods achieved excellent state-of-the-art performance in several applications
including medical image applications, these methods require each sample in the dataset to be annotated during
training. In real-world applications, manual labeling of samples is expensive, and might not even be possible due
to the dynamic nature of real-world datasets. Therefore, active learning23,24 has been proposed to interactively
annotate selected data samples that maximizes the model’s performance while minimizing labeling. To select
the best samples from a pool of unlabeled data, several criteria have been proposed in the literature. These
criteria can be divided into uncertainty-based criteria25–27 and clustering-based criteria.28–30 Clustering-based
approaches follow a labeling procedure based on the clustering of the training data. Specifically, these approaches
require experts to annotate clusters that contain similar examples instead of annotating single examples, which
can significantly boost active learning as well as reduce the labeling cost and the required number of human
interactions.

In this work, we combine a clustering method with active learning for echocardiography view classification.
In particular, our approach integrates cluster annotation steps into the standard active learning framework, and
asks the human expert to label clusters of images instead of single images. To the best of our knowledge, this
work is the first to explore cluster-based active learning for echocardiography classification.
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Figure 1: Examples of echocardiography views. PSAX, A4C, A5C, RVIF, IVC, PLAX, and A2C stand for
parasternal short axis, apical 4 chamber, apical 5 chamber, right ventricle inflow, inferior vena cava, parasternal
long axis, and apical 2 chamber, respectively.

3. MATERIAL & METHOD

3.1 Echocardiography Datasets

We used two datasets to build and evaluate the proposed framework. These datasets are: the publicly available
EchoNet-Dynamic dataset31 and a private NIH dataset.

3.1.1 EchoNet-Dynamic Dataset

EchoNet-Dynamic dataset32 contains 10,036 B-mode (A4C) videos collected from 10,036 random patients who
underwent an echocardiography exam between 2006 and 2018. The number of video frames ranges from 24
to 1002 with a mean acquisition rate of 51 frames per second (FPS). In the processing stage, the videos were
cropped, masked to remove protected health information (PHI), and resized to 112 × 112 pixel resolution. We
converted these videos into images by extracting the key frames from all videos in the dataset. We then divided
the extracted key frames into training and validation sets. These sets are used to build a self-supervised echo-
specific representation. As discussed in the next section, the use of echo-specific representation enhances the
performance of the target task (view classification) because it provides better initialization.

3.1.2 NIH Echocardiography View Dataset

We evaluated the proposed open world active learning framework using an echocardiography dataset collected
in the Clinical Center at the National Institutes of Health (NIH). The use of the de-identified data was excluded
from the Institutional Review Board (IRB) per 45 CFR 46 and the NIH policy for the use of specimens/data
(OHSRP#18-NHLBI-00686). Our dataset contains images recorded from different cardiac views including PLAX,
A4C, inter vena cava (IVC), Doppler (DP), among others. Our initial dataset, which is used to train the initial
classifier, has four known classes: PLAX, A4C, IVC, and Doppler. All other views (e.g., parasternal short-axis
views [PSAX] and apical 2 chambers [A2C]) are considered unknown. We used 80% of the dataset for training
and validation and the remaining 20% as an independent set for testing. Figure 1 shows examples of common
echocardiography views.
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Figure 2: Overview of the open world active learning framework for echocardiography view classification.

3.2 Open World Active Learning for Echocardiography View Classification

Our proposed framework has two main stages: a classification stage and a clustering stage. In the classification
stage, an open world view classifier is trained to classify known echocardiography views and detect unknown
views. In the clustering stage, similar unknown images are grouped into clusters to be labeled by a human
expert before passing them back to the classification stage for model update. Figure 2 presents an overview of
the proposed open world active learning framework for echocardiography view classification.

3.2.1 Classification Stage

Our open world classifier is constructed as follows. First, we used a self-supervised denoising autoencoder to
learn echo-specific feature representation. Using self-supervised learning to build echo-specific representation
allows exploiting publicly available large scale and unannotated datasets for creating better initialization and
transferring relevant knowledge (i.e., echo weights) to target tasks that may have relatively small datasets. This
can lead to better generalizability and faster convergence as discussed thoroughly in.33 We used a VGG-based
autoencoder, and trained it using a large-scale dataset (EchoNet-Dynamic32) to learn echo-specific features. We
trained the autoencoder to minimize the mean square error (MSE) with a batch size of 64 for 100 epochs, root
mean square propagation (RMSprop), and initial learning rate of 1× 10−2.

After building the echo-specific autoencoder, we appended the pre-trained echo-specific encoder (the encoder
of the autoencoder) with the following classification layers: global average pooling (GAP), empirically determined
dropout ratio of 0.5, and fully connected (FC) layer. Then, we added an open world estimator (OWE) to estimate
the probability of an image belonging to an unseen view class. For the OWE, we experimented with Softmax
thresholding, 1-vs.-rest layer, and OpenMax (see Section 2.2). Finally, we fine-tuned the classifier to minimize the
loss using a stochastic gradient descent (SGD) optimizer with an initial learning rate of 1×10−3 and momentum
of 0.9.

3.2.2 Clustering Stage

We used a clustering algorithm to group similar images of unknown classes into clusters to be labeled by human
experts. Several methods can be used to cluster images of unknown classes. Examples of these methods include
K-medoids,34 K-Means,34 and K-Centers.34 Although k-means and k-centers have been widely studied in the

305

To appear in Proceedings of SPIE Medical Imaging, 2022



literature, these methods do not return real samples as cluster representatives,34 making them unsuitable for
active learning.

Hence, we used a simple and fast K-medoids clustering algorithm35 to group unknown images into cluster
representatives. Specifically, the embedded features of the unknown images, which are extracted by the autoen-
coder (see Figure 2), are used by K-medoids to generate k clusters of unknown classes. The optimal number of
clusters (k) can be determined empirically (e.g., elbow method) or specified by a human’s expert. After grouping
unknown images into different clusters, a certified echocardiologist labeled each cluster group of unknown images
instead of labeling all the unknown images, leading to a significant reduction in the required time and number of
human interactions. Finally, the newly labeled images (previously unknown) were sent back to the classification
stage and used to update the open world classifier.

The iterative procedure of training and updating the proposed framework can be summarized as follows:

1. Train an initial open world classifier to classify echocardiography view images as known views or unknown
(unseen) views.

2. Use the features embeddings of unknown images (extracted by the autoencoder) and K-medoid clustering
algorithm to group similar unknown images into k clusters.

3. Present the k clusters of unknown images to human experts for labeling.

4. Add the newly labeled images to the initially labeled dataset.

5. Re-train the open-world classifier (step 1) using the new labeled dataset.

We repeat this process of labeling clusters and using them to update the open world classifier whenever new
clusters of unknown images are created.

4. EXPERIMENTS & RESULTS

We conducted different experiments to evaluate the proposed open world active learning framework. For the
analysis, we partitioned the echocardiography view dataset into four known classes (IVC, Doppler, PLAX, and
A4C) and four unknown classes.

4.1 Open World Classification

To evaluate the performance of echocardiography view classification in closed and open world settings, we
performed four experiments to train four different classifiers. In each experiment, we trained the classifier using
the echo-specific weights, which are learned by the self-supervised representation, and compared its performance
with random and ImageNet weights.

4.1.1 Experiment 1 (Closed world classifier)

This classifier is trained with the classical Softmax to recognize four classes: PLAX, IVC, A4C, and Doppler. If
the classifier encounters an unknown class, it classifies it as one of the known classes. To evaluate the impact
of the echo-specific representation, we trained three versions of this closed world classifier. The first version is
initialized using the echo weights learned from the echo-specific representation. The second and third ones are
trained using random weights and ImageNet weights, respectively.

4.1.2 Experiment 2 (Open world classifier with Softmax)

This classifier is trained only on known classes and uses a specific threshold to detect unknown classes. Specif-
ically, this classifier labels an input image as unknown if it has an output score less than a given threshold (t).
Similar to the closed world classifier, we trained this classifier with echo-specific, random, and ImageNet weights
to evaluate the impact of the echo-specific representation on the classification performance. In all experiments,
we set the threshold t = 0.5.
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Table 1: Performance (F-score) of echocardiography view classification using the traditional closed world classifier
and three open world classifiers. We initialized each classifier with echo-specific, ImageNet, and random weights
to evaluate the impact of our self-supervised echo-specific representation on the performance of view classification.
The ⋆ symbol indicates that the performance of using echo-specific weights is significantly (P < 0.05) higher than
other weights. × symbol indicates that the performance of open world (1-vs.-rest) is significantly (P < 0.05)
higher than closed world, open world (Softmax), and open world (OpenMax).

Classifier Echo-specific Weights ImageNet Weights Random Weights
Cloed world (traditional) 0.698±0.11⋆ 0.685±0.17 0.636 ±0.22
Open world (Softmax) 0.755±0.08 ⋆ 0.723±0.010 0.702±0.14
Open world (OpenMax) 0.858±0.21 ⋆ 0.824±0.16 0.776±0.22
Open world (1-vs.-rest) 0.954±0.09 ⋆× 0.911±0.13 0.875±0.11

4.1.3 Experiment 3 (Open world classifier with OpenMax)

This classifier is trained for an open world setting using the OpenMax layer. To generate the OpenMax layer,
we computed the activation vectors based on the fully connected layer (penultimate) as follows. For each class
in our dataset, we computed the activation vector based on the output of the penultimate network layer for
all correctly classified examples. Then, we computed the Euclidean distance between each correctly classified
training example and their corresponding activation vector to generate class-specific distance distribution. From
these distances, we estimated the parameters of Weibull distribution. After estimating Weibull distributions for
each class, the classical Softmax layer is replaced with a new OpenMax layer that outputs a distribution among
C + 1 classes. During testing, a distance with respect to the activation vectors is computed and used to revise
OpenMax activations. These OpenMax activations are used to accept known classes and reject unknown ones.

4.1.4 Experiment 4 (Open world classifier with 1-vs.-rest)

In this classifier, we included a 1-vs.-rest layer after the fully connected layer. This layer rejects an input image
or labels it as unknown using a Gaussian fitting (GF)-based threshold (see Section 2.2). This classifier is trained
three times with echo-specific weights, random weights, and ImageNet weights.

Table 1 presents the performance of the four experiments. Previous studies36 reported that F measure is
better than other metrics (e.g., accuracy) when reporting the performance of open world classification as it is
not inflated by true negatives; hence, we used F measure to report the performance. From the table, we can see
that the classifiers in the four experiments achieved significantly (P < 0.05) higher performance when initialized
using echo-specific weights. This is attributed to the similarity of the transferred echo-specific knowledge to the
target task (view classification) as compared to the knowledge (or weights) obtained randomly or from stock
photographic images (ImageNet). These results are consistent with previous works in the literature33,37–39 that
report enhanced performance and generalization of target tasks when initialized with modality-specific weights.
We can also see from Table 1 that the closed world classifier achieved the lowest performance. This is attributed
to the random classification of unknown views as one of the known views. Comparing the open world classifiers,
we can observe that the 1-vs.-rest open world classifier achieved the highest performance. The receiver operating
characteristic (ROC) curves for all classifiers are shown in Figure 3. As shown in the figure, the curve of the open
world 1-vs.-rest classifier lies above all other curves, suggesting its superiority. These results support previous
works21,40 that reported the superior performance of 1-vs.-rest layer (a.k.a, DOC) for both open image and open
text classification.

4.2 Cluster-based Active Learning

After the best performing open-world classifier (i.e., 1-vs.-rest) identifies the unknown views, these views are 1)
clustered as described in Section 3.2.2, 2) labeled by a human expert, and 3) used to update the initial open
world classifier with the new known views (previously unknown).

Figure 4 shows the confusion matrices of the open world classifier with two updates. In the left confusion
matrix, we can see that the updated open world classifier can classify the images of the four known classes
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Figure 3: ROC plots for closed world and open world classifiers.

as well as the images from two new classes (A2C and PSAX) with high accuracy. It can also label unseen
images as unknown. Then, these new unknown images are clustered, labeled, and used for another update. The
performance of the second classifier’s update is reported in the right confusion matrix. Similarly, we can see that
the updated classifier classified the images of the six classes as well as the images from two new classes (A3C and
M mode) with high accuracy. These results prove the ability of the proposed classifier to accurately classify known
views while actively recognizing and learning unknown views in a dynamic way. All current echocardiography
view classifiers are static and closed (i.e., only classify views seen during training). These results are encouraging
and prove the robustness, reliability, and superiority of the proposed framework as compared to the traditional
approaches for echocardiography view classification.

5. CONCLUSION

As the real world clinical environment is dynamic and open containing images from classes that might not
appear during training, it is important to design a robust open world classifier that classifies medical images
from the seen classes while rejecting or labeling images from unseen classes as unknown. This paper presents
the first application of an open world active learning framework in echocardiography view classification. Our
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Figure 4: Confusion matrices for open world active learning classifier. First column: the matrix for the open
classifier after an update, with the initial 4 known classes and 2 new known classes (A2C and PSAX). Second
column: the matrix for the open classifier after a second update with the initial 4 known classes, 2 known classes
from the first update (A2C and PSAX), and 2 new known classes (A3C and M-mode). From these matrices, we
can see that the classifier is dynamically and actively learning and updating its knowledge about the views while
identifying unknown images. Further, we can observe that the performance of the known classes improved after
each update of the classifier.

framework uses a self-supervised autoencoder trained on unlabeled echo dataset to learn echo-specific feature
representation. The learned representation is then used to enhance the performance and generalizability of the
echocardiography view classifier. To make this classifier suitable for the open world setting, we experimented
with three approaches: Softmax thresholding, OpenMax, and 1-vs.-rest layer. Further, we used a cluster-
based approach to actively cluster images of unknown classes,present these clusters to experts for annotation,
and use them to update the open world classifier. As experts annotate clusters instead of single images, this
approach significantly reduces the required number of human interactions to train and update the classifier. Our
experiments on an echocardiography dataset with known and unknown views show that the proposed classifier
significantly outperforms the closed world echocardiography view classifier and achieves new state-of-the-art
results.

The proposed framework can be improved in different ways. For example, we can explore different CNNs
architectures, hyperparameter optimization methods, and other clustering methods. Also, we can explore pre-
senting a representative subset of images with fewer samples instead of presenting all images in the cluster to
reduce the cluster’s visual complexity. We believe this framework can be easily extended and applied to other
medical imaging modalities including chest X ray (CXR), Magnetic resonance imaging (MRI), and computerized
tomography (CT).
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