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Abstract
We present a methodology that automatically selects indexing algorithms for each heading in Medical Subject Headings

(MeSH), National Library of Medicine’s vocabulary for indexing MEDLINE. While manually comparing indexing

methods is manageable with a limited number of MeSH headings, a large number of them make automation of this selec-

tion desirable. Results show that this process can be automated, based on previously indexed MEDLINE citations. We

find that AdaBoostM1 is better suited to index a group of MeSH hedings named Check Tags, and helps improve the

micro F-measure from 0.5385 to 0.7157, and the macro F-measure from 0.4123 to 0.5387 (both p < 0.01).
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1. INTRODUCTION

MEDLINER citations are indexed using the Medical

Subject Headings (MeSH) R controlled vocabulary. This

indexing is performed by a relatively small group of

highly qualified indexing contractors and staff at the US

National Library of Medicine (NLM). Their task is becom-

ing more difficult, due to the yearly increase of MED-

LINE, currently increasing by around 700 k articles per

year [1].

The Medical Text Indexer (MTI) [2-4] is a support tool

for assisting indexers as they add MeSH indexing to

MEDLINE citations. MTI has two main components:

MetaMap [5], and the PubMedR Related Citations (PRC)

algorithm [6]. MetaMap analyzes citations, and annotates

them with Unified Medical Language System (UMLS) R

concepts. Then, the mapping from UMLS to MeSH fol-

lows the Restrict-to-MeSH [7] approach, which is based

primarily on the semantic relationships among UMLS

concepts (MetaMap Indexing, MMI). The PRC algorithm

is a modified k-nearest neighbor (k-NN) algorithm, which

relies on document similarity to assign MeSH headings.

The output of MMI and PRC are combined by linear

combination of their indexing confidence. This method

attempts to increase the recall of MTI, by proposing

indexing candidates for MeSH headings that are not

explicitly present in the title and abstract of the citation,

but that are used in similar contexts. Finally, a post-pro-

cessing step arranges the list of MeSH headings, and tai-

lors the output to reflect NLM indexing policy.

We are studying the use of machine learning, to improve

the MeSH heading assignment to MEDLINE citations

performed by MTI. While comparing and selecting index-

ing methods is manageable with a limited number of

MeSH headings, a large number of them make automa-

tion of this selection desirable.
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In this work, we present a methodology to automatically

select an indexing algorithm for each MeSH heading.

Experiments are performed on the whole set of MeSH

headings, and on a set of MeSH headings known as Check

Tags [8]. Check Tags are a special class of MeSH head-

ings routinely considered for every article, which cover

species, sex and human age groups, historical periods,

and pregnancy. We show that this process can be auto-

mated, based on previously indexed MEDLINE citations.

II. RELATED WORK

We find that most of the existing MeSH indexing

methods fit into either pattern matching methods, which

are based on a reference terminology (like UMLS or

MeSH), or machine learning approaches, which learn a

model from examples of previously indexed citations.

In the machine learning community, the task of MeSH

indexing has been considered as a text categorization

problem. Publication of the OHSUMED collection [9],

containing all MEDLINE citations in 270 medical jour-

nals over a five-year period (1987-1991) including MeSH

indexing, provided a large body of data that enabled us to

view MeSH heading assignment as a classification prob-

lem. The scope of the collection determined the subset of

MeSH that can be explored. For example, Lewis et al.

[10] and Ruiz and Srinivasan [11] used 49 categories

related to heart diseases with at least 75 training docu-

ments, and Yetisgen-Yildiz and Pratt [12] expanded the

number of headings to 634 disease categories. Poulter et

al. [13] provide an overview of these and other studies of

classification methods, applied to MEDLINE and MeSH

subsets.

Among the pattern matching methods, we find MetaMap,

as mentioned above, and an information retrieval approach

by Ruch [14]. Pattern matching considers only the inner

structure of the terms, but not the terms with which they

co-occur. This means that if a document is related to a

MeSH heading, but the heading does not appear in the

reference source, it will not be suggested.

Currently, MeSH contains 26,142 main headings and

over 172,000 entry terms, to assist the indexers in deter-

mining the appropriate main headings to assign to a MED-

LINE citation. Small-scale studies with machine learning

approaches already exist [12, 15]. But the presence of a

large number of categories has forced machine learning

approaches to be combined with information retrieval

methods designed to reduce the search space. For instance,

PRC and a k-NN approach by Trieschnigg et al. [16] look

for similar citations in MEDLINE, and predict MeSH

headings by a voting mechanism on the top-scoring cita-

tions. Experience with MTI shows that k-NN methods

produce high recall, but low precision indexing. Other

machine learning algorithms have been evaluated that

rely on a more complex representation of the citations,

e.g., learning based on Inductive Logic Programming [17].

In previous work [18, 19], we showed that MeSH head-

ings have different behavior, depending on the indexing

algorithm used.

The selection of the best indexing method is a chal-

lenging task, due to the number of available categories

and methods. In this paper, we present a methodology

that automates the selection of indexing algorithms based

on meta-learning.

III. META-LEARNING

In machine learning, meta-learning [20, 21] applies

automatic learning to machine learning experiments. In

our work, the experimental data are indexing algorithm

results, which are used to select the most appropriate

algorithm.

Indexing methods have different performance, depend-

ing on the MeSH heading. To illustrate why this happens,

we can place the citations in a two dimensional space, in

which a + sign is a positive example, and a - sign is a neg-

ative example.

Fig. 1 shows two sets of instances represented in this

vector space. In the left image, the positive and negative

citations can be split into two sets, based on a separating

hyperplane, supporting the use of a support vector machine

(SVM) approach with linear kernel. In the right image, it

is not possible to identify a hyperplane, so another kind

of learning algorithm is required, e.g., k-NN or SVM

with non-linear kernel.

Without previous experimentation, it is difficult to know

how the positive and negative instances are distributed in

the citation space. Experimentation with several learning

algorithms allows for a better understanding of the prob-

lem being addressed.

We propose to collect indexing results based on machine

learning and MTI experiments, and use them as input

data for the meta-learning experiments. The representa-

tion of the citation will play a role in the model optimiza-

tion as well. For instance, n-grams afford an appropriate

representation, when word collocation is relevant for

indexing.

With small sets, manual selection and optimization of

the parameters can be managed efficiently. But when

Fig. 1. Instance sets.
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there is a large number of categories, meta-learning can

play an important role. The optimization parameters are

one level above traditional machine learning, since the

objective is not to improve an existing learning algo-

rithm, but to select the best algorithm, and its configura-

tion for a given problem. In Table 1, we compare the

performance of MTI and several standard machine learn-

ing algorithms for the Humans MeSH heading.

In this case, AdaBoostM1 outperforms all the other

methods, and would be the method of choice for indexing

citations with Humans MeSH heading. 

IV. METHODS 

In this section, we present how the framework is trained,

and how it is used to index citations. Then, the base meth-

ods used for MeSH indexing are shown. The methods

include MTI, a dictionary lookup approach, and several

machine learning algorithms.

Experiments have been performed on a set of 300k

citations from the 2011 MEDLINE Baseline and the 2011

MeSH vocabulary. The citations are sorted by date, so the

first 200k citations are used for training, and the remain-

ing 100k for testing.

A. Training

The outcome of the training is a mapping between a

MeSH heading, and an indexing method to be used for

that MeSH heading. The performance of each algorithm

on each MeSH heading was collected and compared. In

this work, we have used the F-measure as our indexing

performance measurement, which is standard in text cate-

gorization, even though other measurements, like accu-

racy, could be considered as well.

Since machine learning algorithms require training, we

have split the 200k training data into training and valida-

tion subsets. To increase confidence, several training and

validation splits were evaluated, and the results averaged.

We have run 5 times 2-fold cross validation. Statistical

significance of the results was computed using a random-

ization version of the two sample t-test [22].

In each split, the steps to estimate the performance of

each algorithm A for each MeSH heading M were:

• Step 1: If required, train algorithm A using the train-

ing subset. The positive examples are the citations

indexed with the M MeSH heading, the rest are con-

sidered as negative examples. Note that MTI and dic-

tionary lookup methods do not require training.

• Step 2: Use algorithm A to index the citations in the

validation subset with M MeSH heading.

• Step 3: Compute the performance of algorithm A, i.e.,

the F-measure, comparing the indexing produced in

step 2 to the original indexing for the validation set.

This process was repeated for each MeSH heading.

The best method for each heading was selected and

stored in a mapping table. For machine learning methods,

the trained model for the best method was also stored in

the table.

B. Indexing

During indexing time, the mapping table prepared dur-

ing the training process is used to index citations. Given a

new citation, for each MeSH heading M the correspond-

ing method from the mapping table is selected, and used

to determine if the citation should be indexed with M.

Several implementations could be considered to speed

up the indexing. Batch indexing of the citations, and a

post-processing of the outcome, could be considered to

index the citations with predictions by MTI, filtering out

the predictions for which MTI was not the preferred

method. On the other hand, trained machine learning mod-

els could be applied in parallel, to determine the index-

ing. This would allow processing of a large number of

citations with one method, instead of processing a single

citation by all the methods. Again, the results would be

post-processed, but this time to merge the results of each

indexing method.

C. MeSH Indexing Methods

Most of the indexing algorithms we study here require

a training phase, MTI and dictionary lookup being excep-

tions. MTI has already been described in the introduction,

so we focus on the other methods used in our experiments.

Since the main focus of the paper is the meta-learning

framework, only machine learning algorithms that we

could train using a large number of examples and a large

number of categories (MeSH headings) have been selected.

AdaBoostM1 has been used only in the Check Tag exper-

iments. We are planning to include more learning algo-

rithms, as they are integrated into our system. 

D. Dictionary Lookup

This method looks for mentions of the MeSH heading

in the citation text, as they appear in MeSH. If the men-

tion of a MeSH heading is matched in the citation text,

the citation is indexed with this MeSH heading. The pre-

ferred term and its entry terms are included in the dictio-

Table 1. F-measure for indexing methods on the Humans MeSH
heading

Method Average F-measure

Medical Text Indexer 0.72

Naïve Bayes 0.85

Support Vector Machine 0.88

AdaBoostM1 0.92
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nary. MeSH is turned into a list of terms and IDs.

Our dictionary lookup implementation is based on the

monq.JFA package [23]. In addition to matching the dic-

tionary terms to text, morphological changes are applied

to the lexical items; e.g., the case of the first letter is nor-

malized, hyphens are changed to spaces, and plural termi-

nation is normalized. Furthermore, the longest matched

span is selected. For instance, the span of text “...quality

of breast cancer care...” matches cancer and breast can-

cer. In this case, the match breast cancer is selected.

In our work, dictionary lookup was used to index a

citation based on the title and abstract text (MeSH TIAB

DL), and to index only the title (MeSH TI DL), which

might provide higher precision, at the cost of recall.

E. Naïve Bayes

A citation C is indexed with a MeSH heading I, if the

probability of indexing the citation with the MeSH head-

ing is higher than the probability of not indexing it (NI):

(1)

Using Bayes:

(2)

We can remove P(C), without affecting the inequality.

As presented in Equation 3, the probability of a cita-

tion being indexed with a given MeSH heading is the

product of the probabilities of each term t in the citation.

The probability that a citation will not be indexed with

the MeSH heading is estimated in the same way.

(3)

The probability of a term given a MeSH heading is

estimated as shown in Equation 4, where N is the total

number of citations, cft,I is the number of citations where

term t appears and the citation is indexed with the MeSH

heading. V is the set of all tokens.

(4)

We use a smoothed model based on Jelinek-Mercer

[24], due to term sparsity. In our experiments, we have

used a value for λ of 0.8.

(5)

Finally, the prior P(I) is presented in Equation 6, where

cfI is the number of citations that have been indexed with

the MeSH heading I.

(6)

We have also implemented a variant of Naïve Bayes

(NB) based on term frequency - inverse document fre-

quency (TF-IDF) [25], which has been shown to improve

the performance of a traditional NB for text categorization.

We represent occurrences of the terms in the citations

as binary features, so the frequency of a term in a docu-

ment is not considered. We use a unigram model, so the

relations of the terms in the citation are also not consid-

ered.

F. Rocchio

Usually used in query expansion in ad-hoc retrieval,

Rocchio has been used as well for text categorization. A

vector is calculated for each MeSH heading, by adding

the mentions of the term t in the citations where the MeSH

heading I and the term occur together, as we can see in

Equation 7.

(7)

Given a citation, MeSH headings are ranked by cosine

similarity. From this ranked list, we take the top n MeSH

headings. In our experiments, we have considered the top 20.

G. AdaBoostM1

AdaBoostM1 [26] is an ensemble learning algorithm,

which samples iteratively from the training data, accord-

ing to the performance of a base learner. In each iteration,

a new model is produced. The final decision is based on

the weighted sum of the models produced in the iterative

process. The weights are estimated based on the perfor-

mance of each model on the training data. In this work,

10 iterations were performed.

In our experiments, we used C4.5 as the base learner,

since it has produced good results in the past [18], with a

smaller set of MeSH headings. Our decision tree is an

implementation of the C4.5 algorithm [27] with pruning,

and with the minimum number of elements in leaf nodes

set to 5. In our implementation, we consider binary fea-

tures and 1-versus-all classification as well. This setup

allows for optimizations in the information gain calcula-

tion that allow training this algorithm efficiently. We

trained the learner on the random training set splits, as

well as with oversampling of the positive examples, try-

ing to overcome skewness in the distribution of positive

and negative examples. In oversampling, examples are

added to the minority category. In our experiments, we

selected examples randomly from the minority category,

till both categories had the same number of examples.

H. Voting

Combinations of methods have proved to increase per-

formance of individual methods [28, 29]. Given a cita-

tion, for a given MeSH heading, the predictions for each
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of the indexing methods presented above were collected.

Then, the votes were counted, and if the sum of the votes

was over a given threshold, the MeSH heading was pre-

dicted by this method. We have performed experiments

with different voting values, based on the methods pre-

sented above.

V. RESULTS AND DISCUSSION

We have performed two experiments. In the first one,

we have considered all the MeSH headings and trained

algorithms, which can handle a large number of catego-

ries and features. In the second one, we evaluated a

reduced set of MeSH headings, named check tags.

In both experiments, MTI annotation was considered

the baseline method. Features for the machine learning

algorithms were represented as the presence of tokens

from the title and abstract of the citation; the frequency of

the tokens in the citation was not used. The tokens were

lowercased, but not stemmed.

A. Results with All MeSH Headings

This experiment was done on all MeSH headings. The

experiment used all but the AdaBoostM1 method, due to

the time it takes to train it. For 2,712 of the 26k MeSH

headings, a different method from MTI was selected:

either a single method or a voting combination of them.

Only methods significantly better than MTI were selected.

This means that if the methods had a similar perfor-

mance, MTI was preferred. In Table 2, we only show the

set of MeSH headings grouped by learning method,

where MTI was outperformed by methods as selected by

meta-learning. MTI is the best algorithm for the MeSH

headings not reflected in this table.

Voting 3, in which at least three methods agreed on

predicting the MeSH heading, seems to perform better

than the individual methods tested in this work. Voting 4

has a larger increase in precision compared to the

decrease in recall, so the F1 is higher compared to MTI.

On the other hand, if five of the evaluated methods

need to agree, only a small number of MeSH headings

are affected, and the performance is lower, compared to

MTI.

Surprisingly, dictionary lookup (MeSH TIAB DL) per-

forms reasonably well in some cases, compared to MTI.

Machine learning methods perform better only on a small

set of MeSH headings; one of the problems could be the

small number of positive examples available for most of

Table 2. Results for Medical Text Indexer (MTI) and meta-learning for the 2,712 MeSH headings (MHs)

Method MH count P TP FP Micro P Micro R Micro F Macro P Macro R Macro F

Vote 3 1,037 103,510 59,084 52,642 0.5288 0.5708 0.5490 0.5747 0.5774 0.5760

MTI 1,037 103,510 63,356 86,037 0.4241 0.6121 0.5010 0.4819 0.6383 0.5492

MeSH TIAB DL 701 53,140 28,550 29,373 0.4929 0.5373 0.5141 0.5455 0.6118 0.5767

MTI 701 53,140 23,989 24,503 0.4947 0.4514 0.4721 0.5347 0.5722 0.5528

MeSH TI DL 530 16,360 8,148 5,792 0.5845 0.4980 0.5378 0.7712 0.4989 0.6059

MTI 530 16,360 10,835 18,641 0.3676 0.6623 0.4728 0.5066 0.6887 0.5838

Vote 4 176 11,103 5,577 6,222 0.8922 0.5023 0.6427 0.4400 0.6479 0.5241

MTI 176 11,103 7,458 20,353 0.3658 0.6717 0.4737 0.1393 0.9225 0.2420

Rocchio 175 122,579 60,353 191,842 0.2393 0.4924 0.3221 0.1815 0.5060 0.2672

MTI 175 122,579 9,643 9,355 0.5076 0.0787 0.1362 0.4498 0.1048 0.1700

NBTFIDF 88 16,096 6,382 29,067 0.1800 0.3965 0.2476 0.1496 0.4285 0.2218

MTI 88 16,096 2,204 4,113 0.3489 0.1369 0.1967 0.3957 0.1236 0.1884

Naïve Bayes 3 141,448 108,214 48,534 0.6904 0.7650 0.7258 0.6644 0.7505 0.7048

MTI 3 141,448 68,255 7,577 0.9001 0.4825 0.6283 0.8797 0.4149 0.5639 

Vote 5 2 85 34 21 0.6182 0.4000 0.4857 0.8019 0.3216 0.4591

MTI 2 85 70 151 0.3167 0.8235 0.4575 0.4049 0.6564 0.5009

Overall MH count P TP FP Micro P Micro R Micro F Macro P Macro R Macro F

Meta-learning 2,712 464,321 276,342 363,493 0.4319 0.5952 0.5005 0.5690 0.5589 0.5639

MTI 2,712 464,321 185,810 170,730 0.5211 0.4002 0.4527 0.4927 0.5850 0.5349

TI: title, AB: abstract, DL: dictionary lookup, NBTFIDF: Naïve Bayes term frequency inverse document frequency, P: precision, TP: true positive, FP:

false positive, R: recall.
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the MeSH headings.

Learning methods seemed to be more effective for the

fewer MeSH headings that are more common in the

indexing (e.g., Humans, Male, Female). These headings

have more training data, and a more balanced proportion

between positives and negatives.

NB has good performance on the most frequent MeSH

headings (Humans, Male, and Female), which belong to

the set of Check Tags. The modified NB (NBTFIDF) has

better performance for a larger number of MeSH head-

ings, compared to plain Naïve Bayes. Finally, Rocchio

performs better in a larger number of MeSH headings,

compared to the other two NB algorithms.

We can see that only a limited number of MeSH head-

ings were affected by using the proposed approach. We

have analyzed the results, and found that the improve-

ments apply mostly to MeSH headings which had a

higher indexing frequency. The large imbalance and vari-

ability between the training and testing might justify the

results obtained with lower frequency MeSH headings.

Another factor is that, since MTI is the current system, it

has been left as the default, if the differences with MTI

were not statistically significant.

B. Results with Chect Tags

In this experiment, we have included AdaBoostM1 as

a learning algorithm. In Table 3, we present the evalua-

Table 3. Results for Medical Text Indexer (MTI) and meta-learning for the Check Tags set

MH DUI Method P TP FP Precision Recall F1

Adolescent D000293 AdaBoostM1 OverSampling 8,156 2,638 2,489 0.5145 0.3234 0.3972

  MTI 1,275 410 0.7567 0.1563 0.2591

Adult D000328 AdaBoostM1 OverSampling 19,362 11,516 7,396 0.6089 0.5948 0.6018

MTI 2,407 2,874 0.4558 0.1243 0.1953

Aged D000368 AdaBoostM1 OverSampling 13,389 7,509 5,357 0.5836 0.5608 0.5720

  MTI 875 249 0.7785 0.0654 0.1206

Aged, 80 and over D000369 ROCCHIO.output 5,205 2,802 10,370 0.2127 0.5383 0.3049

  MTI 15 89 0.1442 0.0029 0.0057

Animals D000818 AdaBoostM1 OverSampling 24,218 18,111 3,405 0.8417 0.7478 0.7920

  MTI 17,582 2,712 0.8664 0.7260 0.7900

Bees D001516 MTI 59 46 19 0.7077 0.7797 0.7419

Cats D002415 vote.3 233 153 18 0.8947 0.6567 0.7574

  MTI 196 107 0.6469 0.8412 0.7313

Cattle D002417 AdaBoostM1 OverSampling 1,114 791 269 0.7462 0.7101 0.7277

  MTI 772 271 0.7402 0.6930 0.7158

Cercopithecus aethiops D002522 MTI 206 62 56 0.5254 0.3010 0.3827

Chick Embryo D002642 AdaBoostM1 OverSampling 92 55 57 0.4911 0.5978 0.5392

  MTI 28 9 0.7568 0.3043 0.4341

Child D002648 MTI 6,082 3,501 2,122 0.6226 0.5756 0.5982

Child, Preschool D002675 AdaBoostM1 OverSampling 3,302 1,495 1,448 0.5080 0.4528 0.4788

  MTI 23 62 0.2706 0.0070 0.0136

Cricetinae D006224 AdaBoostM1 OverSampling 321 158 62 0.7182 0.4922 0.5841

  MTI 171 157 0.5213 0.5327 0.5270

Dogs D004285 AdaBoostM1 633 461 70 0.8682 0.7283 0.7921

  MTI 483 134 0.7828 0.7630 0.7728

Female D005260 AdaBoostM1 OverSampling 35,501 25,824 6,718 0.7936 0.7274 0.7590

  MTI 11,335 1,812 0.8622 0.3193 0.4660

Guinea Pigs D006168 MTI 132 103 11 0.9035 0.7803 0.8374

History, 15th Century D049668 AdaBoostM1 OverSampling 42 9 437 0.0202 0.2143 0.0369

MTI 0 0 0.0000 0.0000 0.0000

History, 16th Century D049669 AdaBoostM1 72 2 10 0.1667 0.0278 0.0476

MTI 0 0 0.0000 0.0000 0.0000
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Table 3. Continued

MH DUI Method P TP FP Precision Recall F1

History, 17th Century D049670 AdaBoostM1 94 6 21 0.2222 0.0638 0.0992

MTI 0 0 0.0000 0.0000 0.0000

History, 18th Century D049671 AdaBoostM1 145 12 23 0.3429 0.0828 0.1333

MTI 0 0 0.0000 0.0000 0.0000

History, 19th Century D049672 AdaBoostM1 OverSampling 397 128 497 0.2048 0.3224 0.2505

MTI 0 0 0.0000 0.0000 0.0000

History, 20th Century D049673 AdaBoostM1 OverSampling 928 375 1097 0.2548 0.4041 0.3125

MTI 0 0 0.0000 0.0000 0.0000

History, 21st Century D049674 AdaBoostM1 OverSampling 476 97 730 0.1173 0.2038 0.1489

MTI 0 0 0.0000 0.0000 0.0000

History, Ancient D049690 AdaBoostM1 OverSampling 103 35 112 0.2381 0.3398 0.2780

MTI 0 0 0.0000 0.0000 0.0000

History, Medieval D049691 AdaBoostM1 OverSampling 59 10 64 0.1351 0.1695 0.1504

MTI 0 0 0.0000 0.0000 0.0000

History of Medicine D006666 MTI 27 1 3 0.25 0.0370 0.0645

Horses D006736 MTI 229 182 37 0.8311 0.7948 0.8125

Humans D006801 AdaBoostM1 71,484 66,429 5,985 0.9174 0.9293 0.9233

  MTI 48,318 4,360 0.9172 0.6759 0.7783

Infant D007223 AdaBoostM1 OverSampling 2,569 1,144 1,224 0.4831 0.4453 0.4634

  MTI 668 841 0.4427 0.2600 0.3276

Infant, Newborn D007231 AdaBoostM1 OverSampling 1,985 1,042 851 0.5504 0.5249 0.5374

  MTI 850 419 0.6698 0.4282 0.5224

Male D008297 AdaBoostM1 OverSampling 34,463 24,664 7,107 0.7763 0.7157 0.7448

  MTI 8,602 1,405 0.8596 0.2496 0.3869

Mice D051379 MTI 7,144 5,332 810 0.8681 0.7464 0.8026

Middle Aged D008875 AdaBoostM1 OverSampling 18,709 12,275 6,351 0.6590 0.6561 0.6576

  MTI 56 500 0.1007 0.0030 0.0058

Pregnancy D011247 AdaBoostM1 OverSampling 2,637 1,988 653 0.7527 0.7539 0.7533

  MTI 2,107 880 0.7054 0.7990 0.7493

Rabbits D011817 MTI 531 418 58 0.8781 0.7872 0.8302

Rats D051381 MTI 4,577 3,681 443 0.8926 0.8042 0.8461

Sheep D012756 AdaBoostM1 OverSampling 249 196 78 0.7153 0.7871 0.7495

  MTI 199 125 0.6142 0.7992 0.6946

Swine D013552 AdaBoostM1 OverSampling 767 581 212 0.7327 0.7575 0.7449

  MTI 479 187 0.7192 0.6245 0.6685

United States D014481 AdaBoostM1 OverSampling 3,510 1,369 2,130 0.3913 0.3900 0.3906

  MTI 1,007 1,614 0.3842 0.2869 0.3285

Young Adult D055815 ROCCHIO.output 8,527 3,561 10,388 0.2553 0.4176 0.3169

  MTI 12 186 0.0606 0.0014 0.0026

MH: MeSH heading, DUI: descriptor unique identifier, P: positive, TP: true positive, FP: false positive.
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tion results for the selected method on the test data. We

show that in most of the cases, the AdaBoostM1 with

oversampling is the selected method. In Table 4, we com-

pare overall Check Tag results with the MTI results. The

performance of MTI is largely improved by meta-learn-

ing methods. In particular, Middle Aged, Young Adult

and history-related terms profit from the use of alterna-

tive methods, which have very low MTI performance.

These results are in agreement with the experiments

performed with all of MEDLINE, in which high fre-

quency MeSH headings show a larger improvement, based

on meta-learning.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a framework that allows compari-

son of alternative indexing strategies, and an automated

way of deciding on an optimal strategy for use with a

large scale categorizer, namely MTI. We plan to add clas-

sifiers like SVMs, and to experiment with a larger set of

MeSH headings with AdaBoostM1. In addition, we

would like to include techniques that could learn with

very imbalanced datasets, to improve the performance in

lower frequency MeSH headings. The software used for

these experiments is available at [30].

We have considered only the text from the title and

abstract. More information is available in MEDLINE meta-

data, which might be exploited; examples include the

journal and author affiliations.

Other sampling techniques, like synthetic sampling,

might overcome some of the problems of oversampling

and undersampling.

We would like to work as well on the automatic combi-

nation of indexing methods. This may require a combina-

tion of features and models, in which genetic programming

might play a relevant role.
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