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ABSTRACT
Convolutional neural networks (CNNs) trained on natural images are extremely
successful in image classification and localization due to superior automated feature
extraction capability. In extending their use to biomedical recognition tasks, it is
important to note that visual features of medical images tend to be uniquely different
than natural images. There are advantages offered through training these networks on
large scale medical common modality image collections pertaining to the recognition
task. Further, improved generalization in transferring knowledge across similar tasks
is possible when the models are trained to learn modality-specific features and then
suitably repurposed for the target task. In this study, we propose modality-specific en-
semble learning toward improving abnormality detection in chest X-rays (CXRs). CNN
models are trained on a large-scale CXR collection to learn modality-specific features
and then repurposed for detecting and localizing abnormalities. Model predictions are
combined using different ensemble strategies toward reducing prediction variance and
sensitivity to the training data while improving overall performance and generalization.
Class-selective relevance mapping (CRM) is used to visualize the learned behavior
of the individual models and their ensembles. It localizes discriminative regions of
interest (ROIs) showing abnormal regions and offers an improved explanation of
model predictions. It was observed that the model ensembles demonstrate superior
localization performance in terms of Intersection of Union (IoU) and mean Average
Precision (mAP) metrics than any individual constituent model.

Subjects Bioengineering, Infectious Diseases, Radiology and Medical Imaging, Computational
Science, Data Mining and Machine Learning
Keywords Deep learning, Convolutional neural networks, Modality-specific knowledge, Chest
X-rays, Ensemble learning, Class-selective relevance mapping, Visualization, Localization

INTRODUCTION
Computer-aided diagnosis (CADx) tools have gained immense prominence in medicine
by augmenting clinical expertise and reducing observer variability (Bar et al., 2015). Data-
driven deep learning (DL) algorithms using convolutional neural networks (CNNs)
have been successfully applied to chest X-ray (CXR) screening (Singh et al., 2018;
Rajpurkar et al., 2018; Qin et al., 2018; Irvin et al., 2019; Pasa et al., 2019). The CXRs are
analyzed for typical abnormalities to localize suspicious regions (Hwang et al., 2016;
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Lakhani & Sundaram, 2017; Xiong et al., 2018). However, the models are disease-specific.
Generalization would require retraining models on additional expert-annotated training
data and labels. This can be time-consuming and expensive.

Transfer Learning (TF) strategies are commonly adopted when limited data is available,
e.g., medical images. Here, CNNs are trained on a large-scale selection of natural images and
the learned knowledge is transferred and repurposed for the new task (Lopes & Valiati, 2017;
Rajaraman et al., 2018a; Rajaraman et al., 2018b). However, unlike natural images, medical
images exhibit different visual characteristics including color, texture, shape, appearance,
and their combinations, and exhibit low intra-class variance and high inter-class similarity
(Suzuki, 2017), e.g., CXRs. Often, medical image collections are limited in size resulting in
models overfitting and exhibiting poor generalization in real-world applications (Srivastava
et al., 2014). Under these circumstances, the models can be retrained on a large-scale
selection of modality-specific data, henceforth called modality-specific transfer learning.
This strategy induces knowledge in the form of modality-specific feature representations
toward improving generalization and performance for similar tasks. Yadav, Passi & Jain
(2018) performed a coarse-to-fine knowledge transfer for CXR analysis by retraining a
pretrained ResNet-50 (He et al., 2016) model on the National Institutes of Health (NIH)
CXR dataset (Wang et al., 2017) and then repurposing the model to detect Tuberculosis
(TB)-like manifestations in the NIH Shenzhen CXR dataset (Jaeger et al., 2014). Other
literature on modality-specific transfer learning applied to CXR analysis is limited. In
this regard, current research leaves room for progress in evaluating these strategies for
improved learning and performance toward abnormality detection in CXRs.

CNNs are found to be sensitive to the noise present in the training data since they learn
through stochastic optimization and error backpropagation. This leads to variance error
and may result in overfitting since the learning algorithms may also model the random
noise in the training set resulting in poor generalization to real-world data. A machine
learning paradigm called ensemble learning reduces the prediction variance by combining
constituentmodel predictions. This results in amodel with superior performance compared
to any individual constituentmodel (Dietterich, 2000). Several ensemble strategies including
majority voting, simple averaging, weighted averaging, bagging, boosting, and stacking
have been studied to minimize this variance and improve learning and generalization
(Rajaraman, Jaeger & Antani, 2019). A literature survey reveals the use of several deep
model ensembles for visual recognition tasks. Krizhevsky, Sutskever & Hinton (2012) used
a CNN-based model called AlexNet and averaged the predictions of multiple model
instances to achieve superior performance in the ImageNet Large Scale Visual Recognition
Classification (ILSVRC) challenge. Since then, ensemble learning strategies have been used
extensively. In CXR analysis, Lakhani & Sundaram (2017) used an averaging ensemble
of CNNs to detect TB-like manifestations. The ensemble model for disease detection
constructed with customized and ImageNet-pretrained CNNs achieved an area under
the curve (AUC) of 0.99. We have previously proposed a stacked model ensemble with
conventional handcrafted feature descriptors/classifiers and data-driven CNN models
(Rajaraman et al., 2018a) toward detecting TB in chest radiographs. The individual models
and their ensemble were evaluated on different CXR datasets. In the process, the ensemble
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model achieved superior performance in terms of accuracy and AUC, compared to the
other models and the state-of-the-art. Islam et al. (2017) trained different pretrained CNNs
and constructed an averaging ensemble toward cardiomegaly detection using CXRs. The
model ensemble detected the disease with 92% accuracy in comparison to hand-crafted
feature descriptors/classifiers, achieving 76.5% accuracy. The ensemble of CNN models
is observed to deliver superior performance in visual recognition tasks through reduced
variance in their predictions and improved performance and generalization (Rajaraman et
al., 2019).

CNN models are commonly perceived as black boxes with an increasing ask for
an explanation of their decision-making process. A lack of explanation of learned
interpretations has been viewed as a serious bottleneck in acceptance of the technology
for medical screening or diagnostic applications (Kim, Rajaraman & Antani, 2019).
Exploratory studies need to be performed to interpret and explain model behavior
in clinical decision making. A survey of the literature reveals studies discussing the
development of visualization strategies as a way to explain the learned representation
in CNN models. Zeiler & Fergus (2014) proposed a deconvolution model to project the
activations to the input pixel-space and visualize the input stimuli that excite the feature
maps in the intermediate model layers. An ablation study was also performed to discover
the performance contribution from different layers of the learned model to gain insight
into its functioning. Mahendran & Vedaldi (2015) conducted a visual analysis of learned
features through invert representations at different layers of a trained model. It was
observed that the intermediate layers retained all information pertaining to different
degrees of photometric and geometric image variance, thus providing an analysis of the
visual information contained in image representations. Zhou et al. (2016) proposed a
visualization strategy called class activation mapping (CAM) to localize image regions
of interest (ROIs) that are relevant to an image category. However, the usage of this
strategy is limited since it works only with CNN models having a fixed architecture. A
generalized version, called gradient-weighted class activation mapping (Grad-CAM) was
proposed in Selvaraju et al. (2017) to be applied to CNN models with varying architecture
and hyperparameters. These tools rely on the prediction scores from a particular output
node to classify the images to their respective categories. We have previously proposed a
visualization strategy called class-selective relevance mapping (CRM) (Kim, Rajaraman &
Antani, 2019) to localize discriminative ROIs in medical images. The algorithm measures
the contributions of both positive and negative spatial elements in the feature maps in a
trained model toward image classification. The visualization algorithm helped to generate
modality-specific ROI mappings and demonstrated superior performance in comparison
to the state-of-the-art in localizing the discriminative ROIs toward classifying the medical
images belonging to different modalities.

Researchers have attempted to explain CNN model predictions and interpret the
learned representations toward disease detection using CXRs. Wang et al. (2017) used a
gradient-based region localization tool to spatially locate pneumonia in chest radiographs.
An AUC of 0.633 was reported toward detecting eight different thoracic diseases. Rajpurkar
et al. (2017) performed gradient-based ROI visualization and localization toward detecting
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pneumonia in CXRs. They used a DenseNet-121 (Huang et al., 2017) model to estimate
disease probability and obtained 0.768 AUC toward disease detection. An attention-
guided CNN was proposed by Guan et al. (2018) to visualize and localize pneumonia
infection in CXRs. The authors trained pretrained CNNs including ResNet-50 (He et al.,
2016) and DenseNet-121 to learn the feature representations of disease-specific ROI. The
authors reported an average AUC of 0.841 and 0.871 with ResNet-50 and DenseNet-121
model backbones, respectively. Rajaraman et al. (2018a) and Rajaraman et al. (2018b) used
model-agnostic visualization tools and generated class-specific mappings to localize ROI
that is considered relevant for detecting pneumonia and further categorizing bacterial and
viral pneumonia using pediatric CXRs. The performance of the customized and pretrained
CNN models was statistically validated. It was observed that the VGG-16 model achieved
superior classification and localization performance with 96.2% and 93.6% accuracy,
respectively, in distinguishing between bacterial and viral pneumonia.

This work aims to simplify the analysis in a binary triage classification problem that
classifies CXRs into normal and abnormal categories. In this study, we propose modality-
specific ensemble learning toward improving abnormality detection in CXRs. CNNmodels
are trained on a large-scale CXR collection to learn modality-specific features. The learned
knowledge is transferred and repurposed for detecting and localizing abnormalities using a
different CXR collection. A custom, sequential CNN and a selection of pretrained models
including VGG-16 (Simonyan & Zisserman, 2015), VGG-19 (Simonyan & Zisserman,
2015), Inception-V3 (Szegedy et al., 2016), Xception (Chollet, 2017), MobileNet (Sandler
et al., 2018), DenseNet-121, and NASNet-mobile (Pham et al., 2018) are trained on the
large-scale CheXpert CXR dataset (Irvin et al., 2019) to learn modality-specific features
and repurposed for detecting and localizing abnormal CXR regions using the RSNA CXR
dataset (Shih et al., 2019). The predictions of the CNNs are combined through different
ensemble strategies including majority voting, simple averaging, weighted averaging, and
stacking, with an aim to reduce prediction variance and sensitivity to the training data,
the learning algorithm, and to improve overall performance and generalization. Also, we
employ visualization techniques to interpret the significant features that helped in image
categorization. The learned behavior of individual models and their ensemble is visualized
using the CRM visualization tool (Kim, Rajaraman & Antani, 2019). To the best of our
knowledge, this is the first study applied to CXR analysis that proposes a combination of
modality-specific knowledge transfer and ensemble learning and evaluates ensemble-based
disease ROI localization. We evaluate the localization performance of the model ensembles
using Intersection of Union (IoU) and mean average precision (mAP) metrics.

MATERIAL AND METHODS
Data collection and preprocessing
The publicly available CheXpert (Irvin et al., 2019) and RSNA CXR (Shih et al., 2019)
collections are used in this retrospective study. The characteristics of the datasets are
mentioned herewith:

CheXpert CXR collection: Irvin et al. (2019) have collected 223,648 CXRs from 65,240
patients at Stanford Hospital, California, USA. The CXRs are captured in frontal and lateral
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Table 1 Datasets characteristics. The datasets are split at the patient-level into 80% for training and 20%
for testing; 10% of the training data is randomly allocated for validation.

Dataset Abnormal Normal Type

Train Test Total Train Test Total

CheXpert (Frontal) 139,383 34,846 174,229 13,600 3,400 17,000 JPG
RSNA CXR 14,266 3,567 17,833 7,080 1,771 8,851 DICOM

projections and labeled for normal and 14 different thoracic disease manifestations based
on clinical relevance and conforming to the Fleischner Society’s glossary. The authors
developed an automatic rule-based labeling tool to extract clinical observations from the
radiological reports and used them toward image labeling. In this study, we grouped the
CXRs with disease manifestations to construct the abnormal class.

Radiological Society of North America (RSNA) CXR collection: The dataset has been
released as a part of the RSNA Kaggle pneumonia detection challenge, jointly organized
by the radiologists from RSNA, Society of Thoracic Radiology (STR), and the NIH (Shih
et al., 2019). The dataset includes 26,684 normal and abnormal frontal CXRs and is made
available in DICOM format at 1,024× 1,024 spatial resolution. Each CXR image carries one
of the three labels: normal, not-abnormal/not-opacity, and lung opacity. We grouped the
not-abnormal/not-opacity and lung opacity labeled images to construct the abnormal class.
Table 1 shows the distribution of data across the different categories for these datasets.
Of the 3,567 abnormal test images for the RSNA CXR dataset, the authors (Shih et al.,
2019) have made available the ground-truth (GT) bounding boxes for only 1,241 abnormal
images that contain pneumonia-related opacities.

The datasets have been split at the patient-level into 80% for training and 20% for testing
for the different stages of learning performed in this study. We have randomly allocated
10% of the training data for validation.

Lung segmentation and bounding box cropping
The CXRs contain regions that do not contribute to diagnosing lung abnormalities.
Hence, CNN models may learn irrelevant features that impact decision making. Under
these circumstances, semantic segmentation is performed using algorithms like U-Net
(Ronneberger, Fischer & Brox, 2015) to perform pixel-level labeling where each image pixel
is labeled to produce segmentationmaps. The U-Net consists of a contraction/encoder with
convolutional layers to capture image context and a symmetrical expansion/decoder with
transposed convolutions to perform localization. The fully-connected network architecture
accepts images of any size since they do not have dense layers. A dropout U-Net is used
in this study (Novikov et al., 2018) where a dropout layer is placed after the convolutional
layers in the encoder. The addition of dropout layers aid in decreasing generalization error
and enhance learning by providing restrictive regularization (Srivastava et al., 2014). We
used Gaussian dropout since it is observed to perform superior to the classical approach
that uses Bernoulli distribution to drop neural units (Srivastava et al., 2014). After empirical
evaluations, a dropout ratio of 0.2 is used in this study. Figure 1 shows the dropout U-Net
architecture and the segmentation pipeline is shown in Fig. 2. The U-Net model is trained
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on CXR images and their associated lung masks made publicly available by Candemir et
al. (2015). The images and lung masks are augmented on-the-fly during model training
with an aim to reduce overfitting and improve generalization. We used sigmoid activation
to ensure the mask pixels lie in the range [0 1]. Early stopping and callbacks are used to
check the training performance at every epoch and store the best model weights for mask
generation. The model outputs the learned lung masks at 256 × 256 spatial resolution
for the CheXpert and RSNA CXR datasets used in this study. The generated lung masks
are used to delineate the lung boundaries that are cropped to the size of a bounding box,
accommodating the lung pixels. The lung crops are rescaled to 256× 256 pixel dimensions,
the lung bounding box coordinates are recorded and stored for further evaluations.

The cropped lung boundaries are preprocessed as follows: The images are (a) passed
through a median filter with a 3 × 3 kernel to preserve edges and remove noise; (b)
rescaled to the pixel range [0 1]; and (c) mean-normalized and standardized for identical
distribution of the extracted features.

Models and computational resources
We evaluated the performance of the following CNN models at different stages of learning
performed in this study: (a) Custom CNN; (b) VGG-16; (c) VGG-19; (d) Inception-V3; (e)
Xception; (f) DenseNet-121; (g) MobileNet; and (h) NASNet-mobile. The custom CNN
is constructed as a linear stack of depth-wise separable convolution, nonlinear activation,
pooling, and dense layers. Depth-wise separable convolution applies the convolution
operation to individual channels, followed by a point-wise convolution with 1× 1 kernels.
These operations are shown to result in fewer model parameters and reduced overfitting
as compared to conventional convolutions (Chollet, 2017). The architectural framework of
the custom CNN is shown in Fig. 3.

The convolutional block consists of a separable convolution layer, followed by batch
normalization and ReLU non-linearity layers. We added padding to the separable
convolutional layers to ensure the feature map dimensions of the intermediate layers
match the original input size. We used 5 × 5 kernels for all separable convolutional layers.
Each convolutional block is followed by a max-pooling layer; the number of kernels
is increased by a factor of two in the succeeding convolutional blocks to ensure the
computation roughly remains the same across the separable convolutional layers. The
model is added with a global average pooling (GAP) layer, followed by dropout (ratio =
0.5), and a final dense layer with Softmax activation to output prediction probabilities.

We performed Bayesian learning (Mockus, 1974) to optimize the architecture and
hyperparameters of the custom CNN toward the current task. The optimization procedure
involves minimizing a Gaussian process model of an objective function. Bayesian
optimization is performed to find the optimal values for the parameters including learning
rate, depth, L2-weight decay, and momentum. The ‘‘depth’’ parameter controls model
depth. The model has three sections, each with ‘‘depth’’ identical convolutional blocks. The
total number of convolutional blocks is ‘‘3× depth’’.We initialized the number of separable
convolutional kernels to roundup(image size/

√
depth). The search ranges for the learning

rate, depth, L2-weight decay, and momentum are set to [1e−5.1e−2], [1 4], [1e−8.1e−3],
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Figure 1 Architecture of the dropout U-Net.
Full-size DOI: 10.7717/peerj.8693/fig-1

and [0.85 0.99] respectively. The objective function trains themodelwithin the search ranges
specified for the optimizable parameters and the Bayesian-optimized model parameters
for the least validation error are recorded. Based on empirical observations, we performed
30 objective function evaluations toward hyperparameter optimization. The final model
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Figure 2 Segmentation pipeline showing mask generation using a dropout U-NET and lung boundary
cropping.

Full-size DOI: 10.7717/peerj.8693/fig-2

Figure 3 Architecture of the custom CNNmodel (I/P, Input; CONV, Convolutional block; MP, Max-
pooling; GAP, Global average pooling; DO, Dropout; D, Dense layer with Softmax activation).

Full-size DOI: 10.7717/peerj.8693/fig-3

Figure 4 Architecture of the pretrained CNNs (I/P, Input; PCNN, Truncated pretrained CNNs; ZP,
Zero-padding; CONV, Convolution; GAP, Global Average Pooling; DO, Dropout; D, Dense layer with
Softmax activation).

Full-size DOI: 10.7717/peerj.8693/fig-4

with the optimized parameters is trained, validated, and tested through stochastic gradient
descent (SGD) optimization at different stages of learning discussed in this study to estimate
the generalization error and classification performance.

The pretrained CNN models are instantiated with the ImageNet weights and truncated
at their fully-connected layers. The truncated models are appended with the following
layers: (a) zero-padding; (b) convolutional layer with 3× 3 kernels and 1024 feature maps;
(c) GAP; (d) dropout (dropout ratio = 0.5); and (e) dense layer with Softmax activation.
The customized architecture of the pretrained CNNs used in this study is as shown in
Fig. 4.

The hyperparameters of the pretrained CNNs including momentum, learning rate,
and L2-weight decay, in modality-specific transfer learning and coarse-to-fine-learning,
are optimized through a randomized grid search (Bergstra & Bengio, 2012). The search
ranges are set to [0.85 0.99], [1e−9 1e−2], and [1e−10 1e−3] for the momentum, learning
rate, and L2-decay respectively. We retrained the models with smaller weight updates
through SGD optimization to minimize the categorical cross-entropic loss toward CXR
classification. The magnitude of the weight updates is kept small to improve generalization.
We used class weights to assign higher weights to the underrepresented class with an aim
to prevent model bias and overfitting (Johnson & Khoshgoftaar, 2019). The learning rate is
reduced whenever the validation performance plateaued. Callbacks are used to check the
models’ internal states, checkpoints are stored for every epoch, early stopping is performed
to prevent overfitting, and the best model weights are stored to perform hold-out testing.
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Themodels inmodality-specific transfer learning, coarse-to-fine-learning, and ensemble
learning are evaluated in terms of the following performance metrics: (a) accuracy; (b)
AUC; (c) sensitivity; (d) specificity; (e) F measure; and (f) Matthews correlation coefficient
(MCC). We used Keras API with Tensorflow backend and CUDA/CUDNN libraries for
GPU acceleration. Matlab R2018b R© is used for custom CNN optimization. The models are
trained and evaluated on an Ubuntu Linux system with 64GB RAM and NVIDIA 1080Ti
GPU.

Modality-specific transfer learning
We propose modality-specific transfer learning where the pretrained CNNs with ImageNet
weights and the custom CNN with random weight initializations are trained end to end
and evaluated on the large-scale CheXpert data set to classify abnormal and normal
CXRs, thereby making all the weight layers specific to the CXR modality. The idea behind
this approach is to induce knowledge pertaining to a large-scale selection of CXR lung
abnormalities and provide possible hints to how the abnormal and normal lungs look
like. The CheXpert dataset includes normal CXRs and abnormal images containing the
following abnormalities: (a) enlarged cardio-mediastinum; (b) cardiomegaly; (c) lung
opacity; (d) lung lesion; (e) edema; (f) consolidation; (g) pneumonia; (h) atelectasis; (i)
pneumothorax; (j) pleural effusion; (k) pleural other; and (l) fracture. CXRs with disease
manifestations are grouped to form the abnormal class and used to solve the binary
classification task. The learned knowledge is then transferred and repurposed to perform
CXR abnormality detection using the RSNA CXR dataset, with an aim to improve models’
adaptation, performance, and generalization. During model training, we augmented the
CXR images with horizontal, vertical translations and rotations with an aim to improve
generalization and reduce overfitting to the training data. The modality-specific trained
CNNs are henceforth called as coarse models.

Coarse-to-fine learning
For coarse-to-fine learning, we instantiated the convolutional part of the coarse models
and extracted the features from different intermediate layers with an aim to identify the
optimal layer for feature extraction toward the current task. Pretrained models differ in
their depth and learn different feature representations pertaining to their depth. Deeper
models are not always optimal for all the tasks, especially in the medical domain, where
the data distribution is different compared to stock photographic images. In this regard,
it is indispensable to identify the layer in the individual models to extract features that
deliver the best performance toward classifying the classes under study. We used class
weights to penalize the majority class with an aim to prevent model bias. The retrained
models are henceforth called as fine models and the process, coarse-to-fine learning. The
workflow is shown in Fig. 5. As inmodality-specific transfer learning, the data is augmented
with horizontal, vertical translations and rotations during model training. The naming
conventions for the models’ layers follow that available from the Keras library. The models
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Figure 5 Modality-specific knowledge transfer workflow.
Full-size DOI: 10.7717/peerj.8693/fig-5

are trained through SGD optimization and the best model weights are stored to perform
hold-out testing with the RSNA CXR test set.

Ensemble learning
We constructed ensembles of the top-7 fine models with an aim to reduce (i) prediction
variance, (ii) sensitivity to the specifics of the training data, (iii) model overfitting, and (iv)
improve performance and generalization.We performedmajority voting, simple averaging,
weighted averaging, and stacking with an aim to build a predictive model with reduced
prediction variance and improved performance as compared to any individual constituent
model (Dietterich, 2000). Inmajority voting, the predictions from the individual models are
considered vote; the prediction with the maximum votes is considered the final prediction.
In simple averaging, we computed the average of the constituent model predictions to
arrive at the final prediction. The weighted averaging ensemble is an extension of simple
averaging where the constituent model predictions are assigned different weights based
on their classification performance. Model stacking is an ensemble method that performs
second-level learning using a meta-learner that learns to combine the predictions of the
individual models, otherwise called the base-learners (Dietterich, 2000). A stacked model
is considered a single model where the predictions of the individual base-learners are fed
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Figure 6 Stacked generalization. FM (1-7) denotes fine models (base learners) with their outputs con-
catenated to construct a single 14-element vector from the two class-probabilities (abnormal and normal)
predicted by each of the fine models; A single hidden layer is represented by ‘H’ with 14 neurons that in-
terprets the input, and the Dense layer is represented by ‘D’ with Softmax activation that outputs proba-
bilistic predictions.

Full-size DOI: 10.7717/peerj.8693/fig-6

to the meta-learner and are embedded into the multi-headed network architecture. The
stacking workflow is shown in Fig. 6.

Model stacking performs learning at distinct stages: (a) Stage-0: The base-learners
are trained, validated, and tested using the RSNA CXR test set to output predictions;
(b) Stage-1: A neural-network-based meta-learner learns to combine the predictions of
individual base-learners. The meta-learner consists of a hidden layer with 14 neurons
that interprets the input from the base-learners and a dense layer with Softmax activation
to output the prediction probabilities. We freeze the trainable weights in the individual
base-learners and train the meta-learner with an aim to output improved predictions as
compared to any individual base-learner.

Statistical analysis
We performed statistical testing to investigate the existence of a statistically significant
difference in performance between the models in different stages of learning discussed
in this study. Confidence intervals (CI) are used in applied DL to present the skill of
predictive models by measuring the precision of an estimate through the margin of error.
A relatively precise estimate is inferred by a short CI and therefore a smaller error margin.
A larger error margin is inferred by a long CI and therefore low precision (Gulshan et al.,
2016). In this regard, we computed the 95% CI for the AUC values obtained by the models
in modality-specific transfer learning, coarse-to-fine learning, and ensemble learning, to
be the Wilson score interval which corresponds to separate 2-sided CI with individual
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Figure 7 A schematic representation showing the calculation of class-selective relevance mapping
(CRM) from a CNN-based DLmodel.

Full-size DOI: 10.7717/peerj.8693/fig-7

coverage probabilities of sqrt(0.95). Statistical significance and simultaneous 2-sided CI are
computed using the StatsModels version 0.11.0 and SciPy version 1.4.1 python packages.

MODEL VISUALIZATION
Class-selective relevance mapping
The learned behavior of the individual models and their ensembles is visualized based on
the CRM visualization tool (Kim, Rajaraman & Antani, 2019) to localize discriminative
ROI showing abnormal CXR regions and explain models predictions. CRM visualization
algorithm measures the significance of the activations in the feature maps at the deepest
convolution layer of a CNN model to highlight the most discriminative ROI in the input
image at the spatial location (x, y). A prediction score Sc is calculated at each node c in the
output layer. Another prediction score Sc(l,m) iscalculated after removing a spatial element
(l, m) in the feature maps from the deepest convolutional layer. The CRM R(l,m)∈Ru×v

is defined as a linear sum of incremental MSE between Sc and Sc(l,m) calculated from all
nodes in the output layer of the CNN model.

R(l,m)=

N∑
c=1

{(Sc−Sc(l,m))}2 (1)

Accordingly, a spatial element having a large CRM score can be considered as playing an
important role in the classification process since removing that node results in a significant
increase in the mean squared error (MSE) at the output layer. Figure 7 illustrates a
conceptual workflow for measuring the CRM score from a CNN model and is simplified
for the purposes of reader understanding to the case of a two-class problem. Since DL is a
discriminative learning process, an important element in the feature maps from the deepest
convolution layer would make not only a positive contribution to increasing the prediction
score at the output node representing the desired class but also a negative contribution to
decreasing the prediction score at the remaining output nodes. This maximizes the gap
between these prediction scores. Since the CRM is based on the incremental MSE calculated
from all output nodes, the resulting ROI is determined to be class-discriminative.
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Figure 8 Workflow showing an ensemble CRM constructed from three individual CRMs.
Full-size DOI: 10.7717/peerj.8693/fig-8

Ensemble CRM
An ensemble CRM is created by combining and averaging multiple CRMs generated from
different CNN models; the workflow for a selection of three CNN models is shown in
Fig. 8. Since each CNN model generates a different CRM size depending on the spatial
dimensions of the feature maps from its deepest convolution layer, we normalized the
size of all individual CRMs by upscaling them to the size of the input image. We removed
the mapping score value below 10% of the maximum score in each CRM to minimize a
possible noisy influence of a very low mapping score during the ensemble process. The
thresholded CRMs are combined through simple averaging to construct the ensemble
CRM by displaying mapping score values above 10% of its maximum score. This ensemble
CRM is compensated for the error of missing ROI from an individual CNN model with an
aim to improve the overall localization performance.
To demonstrate the effectiveness of our ensemble strategy, we created three ensemble
CRMs by combining the top-3, top-5, and top-7 performing CNNmodels respectively and
quantitatively compared their visual localization performance with each other and with
individual CRMs in terms of IoU and mAPmetrics. IoU is an evaluation metric to measure
the accuracy of object detection and is defined as ‘‘area of the overlap’’/‘‘area of the union’’
between the GT bounding box and the predicted bounding box for a given input image
(Everingham et al., 2015). The mAP score is calculated by taking the mean AP over the IoU
thresholds as detailed in (Lin et al., 2014).

RESULTS
Performance metrics evaluation
Table 2 shows the optimal values obtained for the hyperparameters through (i) Bayesian
optimization for the custom CNN and (ii) randomized grid search for the pretrained
CNNs. Table 3 shows the performance achieved by the coarse models using the CheXpert
test set. It is observed that the VGG-16 model demonstrated superior performance in all
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Table 2 Optimized hyperparameter values for the CNNmodels. Bayesian learning was performed to
optimize the architecture and hyperparameters of the custom and pretrained CNNs by minimizing a
Gaussian process model of an objective function that trains the models within the search ranges specified
for the optimizable parameters including learning rate, momentum, network depth, and L2-decay and the
Bayesian-optimized model parameters for the least validation error are recorded.

Model Optimal values

Learning rate Momentum Depth L2-decay

Custom CNN 1e−3 0.90 1 1e−6
Pretrained CNNs 1e−4 0.95 – 1e−6

Table 3 Performance metrics achieved by the coarse models using the CheXpert test set. The coarse models are initialized with ImageNet
pretrained weights (conventional transfer learning) and trained end-to-end to learn CXR modality-specific weights using the CheXpert data set to
classify the CXRs into normal and abnormal classes. The custom CNN is initialized with random weights. Data in parenthesis are 95% CI for the
AUC values that were calculated to be the Wilson score interval which corresponds to separate 2-sided confidence intervals with individual coverage
probabilities of sqrt(0.95).

Model Accuracy AUC Sensitivity Specificity F measure MCC

Custom CNN 0.8018 0.8898 (0.8813, 0.8983) 0.9030 0.5980 0.7952 0.5356
VGG-16 0.8904 0.9649 (0.9599, 0.9699) 0.9173 0.8448 0.8904 0.7530
VGG-19 0.8799 0.9432 (0.9369, 0.9495) 0.9115 0.8165 0.8798 0.7288
Inception-V3 0.8835 0.9571 (0.9516, 0.9626) 0.9028 0.8363 0.8840 0.7402
Xception 0.8720 0.9401 (0.9337, 0.9465) 0.9005 0.8148 0.8723 0.7126
DenseNet-121 0.8839 0.9493 (0.9434, 0.9552) 0.9140 0.8233 0.8838 0.7378
MobileNet 0.8797 0.9456 (0.9395, 0.9517) 0.9073 0.8244 0.8799 0.7295
NASNet-mobile 0.8824 0.9552 (0.9496, 0.9608) 0.9045 0.8380 0.8828 0.7369

Notes.
Bold values indicate superior performance.

performance metrics. The VGG-16 model demonstrated superior AUC values with a short
CI, signifying a smaller error margin and therefore offering a precise estimate as compared
to the other CNNmodels. The architectural depth of the VGG-16 model remained optimal
to learn the hierarchical feature representations to improve performance with the CheXpert
test set, as compared to the other CNN models.

Table 4 lists the empirically determined, best-performing model layers while performing
coarse-to-fine learning. The performance metrics achieved through extracting the features
from these intermediate layers that helped achieve superior performance toward classifying
normal and abnormal CXRs using the RSNACXR test set are shown in Table 5. The baseline
models refer to the custom CNN and ImageNet-pretrained CNN models that are trained
end to end and evaluated on the RSNA CXR data set. This is the conventional transfer
learning reported in the literature. It is observed from Table 5 that the features extracted
and classified from the different intermediate layers of the coarse models to create fine
models delivered better performance than their baseline counterparts. This performance
improvement could be attributed to the fact that modality-specific transfer learning from
a large-scale CXR collection helped induce knowledge pertaining to a large selection of
abnormal lung manifestations and normal lungs and improved classification performance
with a related classification task using the RSNA CXR dataset.
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Table 4 Candidate CNN layers from the coarse models showing superior performance with the RSNA
CXR test set. The performance metrics achieved through feature extraction from these intermediate lay-
ers of the coarse models helped to achieve superior performance toward classifying normal and abnormal
CXRs using the RSNA CXR test set. The naming conventions for the models layers follow that available
from the Keras DL library.

Model Feature extraction layer

Custom CNN Conv3
VGG-16 Block5-conv3
VGG-19 Block4-pool
Inception-V3 Mixed3
Xception Add-7
DenseNet-121 Pool3-conv
MobileNet Conv-pw-6-relu
NASNet-mobile Activation-129

Table 5 Performance metrics computed with baseline CNNs (conventional transfer learning) and feature extraction from the optimal interme-
diate layers of the coarse models to create fine models using the RSNA CXR test set. Baseline models refer to the custom and ImageNet-pretrained
CNN models that are trained end to end and evaluated on the RSNA CXR data set (conventional transfer learning). To create fine models, the CXR
modality-specific coarse models are instantiated with their modality-specific weights and features are extracted from the optimal intermediate layers.
These models are evaluated using the RSNA CXR dataset to classify them into normal and abnormal classes. Data in parenthesis are 95% CI for the
AUC values that were calculated to be the Wilson score interval which corresponds to separate 2-sided confidence intervals with individual coverage
probabilities of sqrt(0.95).

Model Accuracy AUC Sensitivity Specificity F measure MCC

Baseline 0.8012 0.8852 (0.8766, 0.8938) 0.8901 0.5978 0.7947 0.5347
Custom CNN

Fine 0.8442 0.9171 (0.9097, 0.9245) 0.9023 0.7718 0.8441 0.6478
Baseline 0.8610 0.9153 (0.9078, 0.9228) 0.8907 0.8057 0.8456 0.7214

VGG-16
Fine 0.8946 0.9649 (0.9599, 0.9699) 0.9225 0.8912 0.9201 0.7564
Baseline 0.8602 0.9057 (0.8978, 0.9136) 0.8726 0.7937 0.8314 0.7178

VGG-19
Fine 0.8921 0.9647 (0.9597, 0.9697) 0.9216 0.8351 0.9182 0.7541
Baseline 0.8503 0.8962 (0.8880, 0.9044) 0.8658 0.8002 0.8327 0.7181

Inception-V3
Fine 0.8821 0.9639 (0.9588, 0.9690) 0.8951 0.8613 0.9105 0.7417
Baseline 0.8672 0.9372 (0.9306, 0.9438) 0.8905 0.8137 0.8716 0.7118

Xception
Fine 0.8791 0.9546 (0.9490, 0.9602) 0.9212 0.8238 0.9087 0.7203
Baseline 0.8532 0.9078 (0.9000, 0.9156) 0.8582 0.8326 0.8458 0.7132

DenseNet-121
Fine 0.8873 0.9548 (0.9492, 0.9604) 0.9015 0.8497 0.9125 0.7421
Baseline 0.8558 0.9082 (0.9004, 0.9160) 0.8621 0.8316 0.8447 0.7121

MobileNet
Fine 0.8801 0.9576 (0.9521, 0.9631) 0.8923 0.8582 0.9079 0.7358
Baseline 0.8501 0.9181 (0.9107, 0.9255) 0.8325 0.8615 0.8462 0.7119

NASNet-mobile
Fine 0.8740 0.9544 (0.9488, 0.9600) 0.8642 0.8270 0.9012 0.7311

Notes.
Bold values indicate superior performance.

We performed ensembles of the predictions of the top-7 fine CNN models through
majority voting, simple averaging, weighted averaging, and stacking to classify the CXRs
in the RSNA CXR test set into normal and abnormal categories. The performance metrics
achieved with the different model ensembles are shown in Table 6. In weighted averaging,
we awarded high/low importance to the predictions by assigning higher weights to more
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Table 6 Performance metrics achieved with different model ensemble strategies using the RSNA CXR test set.Data in parenthesis are 95% CI
for the AUC values that were calculated to be the Wilson score interval which corresponds to separate 2-sided confidence intervals with individual
coverage probabilities of sqrt(0.95).

Method Accuracy AUC Sensitivity Specificity F measure MCC

Majority voting 0.8923 – 0.9127 0.8526 0.9178 0.7654
Averaging 0.8964 0.9551 (0.9495, 0.9607) 0.9118 0.8599 0.9201 0.7712
Weighted-averaging 0.9163 0.9747 (0.9704, 0.9790) 0.9249 0.8842 0.9286 0.7895
Stacking 0.8907 0.9552 (0.9496, 0.9608) 0.8944 0.8527 0.9134 0.7601

Notes.
Bold values indicate superior performance.

Table 7 IoU andmAP for CRMs from each individual CNNmodel obtained by averaging IoU andmAP of all abnormal images having GT
bounding box information in the RSNA CXR test set.

Metrics VGG-16 VGG-19 Xception Inception-V3 MobileNet NASNet-mobile DenseNet-121

IoU 0.383 0.357 0.377 0.351 0.368 0.375 0.355
mAP@[0.1 0.6] 0.377 0.341 0.388 0.348 0.352 0.382 0.317

accurate base-learners. We empirically found that VGG-16 and VGG-19 models delivered
superior performance compared to other models. Thus, we assigned weights of [0.25, 0.25,
0.1, 0.1, 0.1, 0.1, 0.1] to the predictions of VGG-16, VGG-19, Inception-V3, Xception,
DenseNet-121, MobileNet, and NASNet-mobile models respectively. We observed that
weighted averaging outperformed majority voting, simple averaging, and stacking in all
performance metrics. As well, the tests for statistical significance demonstrated that the
weighted averaging ensemble demonstrated superior values for AUC with a shorter CI
and hence a smaller error margin than the other model ensembles. Also, considering the
balance between precision and recall, as demonstrated by the F-measure and MCC, the
weighted averaging ensemble outperformed the other methods.

Visual localization evaluation
We evaluated the localization performance of CRMs generated from each of the top-7 fine
CNN models in detecting abnormalities using the RSNA CXR test set. Table 7 shows the
IoU and mAP scores resulting from averaging individual IoUs and mAPs calculated from
a total of 1,241 abnormal images in the RSNA CXR test set that have GT bounding box
information. Here, mAP is calculated by taking the mean AP over 10 IoU threshold values
within the range [0.1 0.6] (denoted as mAP@[0.1 0.6]).

It is observed that VGG-16, Xception, and NASNet-mobile models are the top-3
performing in ROI detection and localization. Figure 9 shows the corresponding precision–
recall curves with respect to different IoU threshold values, where each curve is generated
by varying the confidence score threshold. The confidence score for ROI detection is
defined as the highest heatmap score within the predicted bounding box weighted by the
classification score at the output node in a given CNN model. Accordingly, each curve
represents a plot of precision and recall when an ROI detection having IoU and confidence
scores higher than their corresponding threshold values are only considered true positive
predictions. The AP score of each curve is then calculated by taking the average value of
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Figure 9 Precision-recall curves with respect to the different IoU thresholds for the top-3 performing
CNNs. (A) VGG-16, (B) Xception, and (C) NASNet-mobile, calculated from all abnormal images having
GT bounding box information in the RSNA CXR test set.

Full-size DOI: 10.7717/peerj.8693/fig-9

Table 8 IoU andmAP for ensemble DLmodels reported using the RSNA CXR test set.

Metrics Ensemble-3 Ensemble-5 Ensemble-7

IoU 0.430 0.433 0.432
mAP@[0.1 0.6] 0.420 0.447 0.434

Notes.
Bold values indicate superior performance.

the precision across all recall values. The above-mentioned IoU threshold value range of
[0.1 0.6] was determined based on these precision–recall curves to avoid very poor and
high precision and recall rates, thereby calculating the mAP score correctly reflecting the
localization performance of each DL model.

We then calculated the IoU and mAP scores for three ensemble CRMs: (a) Ensemble-3;
(b) Ensemble-5; and (c) Ensemble-7. These ensemble CRMs are generated by averaging the
CRMs from the top-3, top-5, and top-7 performing CNNmodels that are selected based on
the IoU and mAP scores as shown in Table 6. The models involved in different ensemble
CRMs are: (a) Ensemble-3 (VGG-16, Xception, NASNet-mobile); (b) Ensemble-5 (VGG-
16, Xception, NASNet-mobile, Inception-V3, MobileNet); and (c) Ensemble-7 (VGG-16,
Xception, NASNet-mobile, Inception-V3, MobileNet, VGG-19 and DenseNet-121). As
observed from Table 8, the ensemble CRMs yield significantly higher IoU and mAP scores
as compared to individual CRMs. Among the ensemble CRMs, Ensemble-5 demonstrated
superior performance for IoU and mAP metrics. This indicated that combining more than
the top-5 CNN models does not improve the overall localization performance further
and rather saturates for this study. Figure 10 shows the precision–recall curves of the
ensemble CRMs from which their mAP scores are calculated. Figure 11 shows an example
of Ensemble-5 CRMdemonstrating the effectiveness of our ensemble approach in localizing
abnormal ROIs within a given CXR image from the RSNA CXR test set.

We observed that each individual CRM highlights different areas as their ROIs for the
given image and the bounding boxes surrounding these ROIs have low IoU scores even
though all ROIs detected are actually located within the GT bounding boxes. On the other
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Figure 10 Precision-recall curves with respect to the different IoU thresholds for (A) Ensemble-3, (B)
Ensemble-5, and (C) Ensemble-7 models, calculated from all abnormal images having GT bounding
box information in the RSNA CXR test set.

Full-size DOI: 10.7717/peerj.8693/fig-10

Figure 11 An example of ensemble CRM combining the top-5 CNNmodels.
Full-size DOI: 10.7717/peerj.8693/fig-11

hand, the proposed ensemble CRMhighlights ROIs resulting from averaging the ROIs from
individual CRMs. The ensemble CRM visually and quantitatively demonstrates superior
performance in objection detection and localization than any individual constituent model;
the resulting ROIs are found to have their bounding boxes more closely overlapped with
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the GT boxes and significantly improved IoU scores, compared to those from individual
CRMs. Therefore, we demonstrate that our ensemble approach improves not only the
classification performance but also the object detection performance overall.

DISCUSSION
Since the coarse models have already learned the ability to classify the normal and abnormal
CXRs with a large-scale dataset with a range of data distributions, the learned weights served
as a promising initialization for a related abnormality classification task in a dataset with a
different distribution, as compared to ImageNet weights learned from stock photographic
images that are visually distinct from medical images. The size of the CheXpert data
set is much larger than the RSNA CXR data set, thus transferring knowledge to the
CXR-modality on the first hand allowed for improved initialization and adaptation of the
CNNs that are subsequently trained and evaluated for a related classification task. The
VGG-16 model demonstrated superior performance, followed by VGG-19 as compared to
the other models. As well, tests for statistical significance showed that the VGG-16 model
demonstrated a tighter CI and a smaller margin of error for the AUC values as compared to
the other models. This may be because the architectural depth of VGG models is optimal
for the current task as compared to the other DL models used in this study.

We observed that the weighted averaging ensemble outperformed the other ensemble
methods. We believe this may be due to the fact that deeper models are not always optimal
for all the tasks, especially in the medical domain, where the data distribution is different
compared to stock photographic images. We empirically observed that the VGG-16 model
demonstrated superior performance in all performance metrics, followed by VGG-19, as
compared to the other models. By awarding higher weights to the predictions of the best
performing VGG models, we were able to improve the performance as compared to the
other ensemble methods.

We chose CRM as our visualization method for localizing abnormal CXR regions
based on the recent study (Kim, Rajaraman & Antani, 2019) where CRM shows a better
localization performance than other existing methods including CAM and Grad-CAM. All
individual CNN models employed in our study are found to have a different classification
and localization error distributions. Therefore such errors could be compensated or
reduced by our ensemble approach that combines and averages the individual localization
performance. Our experimental results also show that our ensemble models significantly
outperform the best-performing individual CNN model.

To summarize, modality-specific transfer learning helped to improve performance and
generalization in a related target task. The performance of the ensemble improved with
using the models that inherited modality-specific knowledge from a large-scale CXR data
collection. The performance of ensemble visualization improvedwith the use ofmodels that
benefited from modality-specific knowledge transfer and provided a combined prediction
that is superior compared to any individual constituent model.
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CONCLUSION
The combination of modality-specific model training and ensemble learning helped
to: (a) transfer modality-specific knowledge that is repurposed to improve classification
performance in a similar task; (b) reduce prediction variance, sensitivity to the training data,
andmodel overfitting; and, (c) improve overall performance, and generalization. However,
ensemble methods are computationally expensive, adding training time and memory
constraints to the problem. It may not be practicable to implement model ensembles
at the present; however, with the advent of low-cost GPU technology and availability of
high-performance computing solutions, model ensembles could become practically feasible
for real-time applications. Ensemble visualization helped to interpret the models’ behavior,
compensated for the error ofmissing ROIs using individual CNNmodels and demonstrated
superior ROI detection and localization performance as compared to any individual
constituent model. Further, CRM offers improved interpretation and understanding of
the model’s learned-behavior. We believe that the results proposed are valuable toward
developing robust models for medical image classification and ROI localization. Future
studies could explore the application of ensemble CRMs to other diagnostic/screening
applications, for example, detecting cancers in various image modalities, separating
pneumonia from TB in pediatric CXRs, skeletal malocclusion detection from 3D-Cone
Beam CT images, etc. In addition, it is desirable to compare the performance of ensemble
CRMs to other state-of-the-art visualization strategies.
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