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Abstract—Echocardiography (echo) is a critical tool in diagnosing various cardiovascular diseases. Despite its diagnostic and
prognostic value, interpretation and analysis of echo images are still widely performed manually by echocardiographers. A
plethora of algorithms has been proposed to analyze medical ultrasound data using signal processing and machine learning
techniques. These algorithms provided opportunities for developing automated echo analysis and interpretation systems. The
automated approach can significantly assist in decreasing the variability and burden associated with manual image
measurements. In this paper, we review the state-of-the-art automatic methods for analyzing echocardiography data.
Particularly, we comprehensively and systematically review existing methods of four major tasks: echo quality assessment,
view classification, boundary segmentation, and disease diagnosis. Our review covers three echo imaging modes, which are
B-mode, M-mode, and Doppler. We also discuss the challenges and limitations of current methods and outline the most
pressing directions for future research. In summary, this review presents the current status of automatic echo analysis and
discusses the challenges that need to be addressed to obtain robust systems suitable for efficient use in clinical settings or
point-of-care testing.
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1 INTRODUCTION

CARDIOVASCULAR disease (CVD) is the leading
cause of mortality in the United States and glob-

ally [1]. CVD is diagnosed using several imaging tech-
niques: echocardiography (echo), cardiac magnetic res-
onance imaging (CMR), multiple gated acquisition scan
(MUGA), and computed tomography (CT). Of these
techniques, echo is the most commonly used as it is non-
invasive, portable, inexpensive, and widely available
[2]. Transthoracic echocardiogram (TTE), a very safe
and common type of echocardiogram, involves using
a transducer to transmit ultrasound waves to the heart
and converting the reflected waves (echoes) into images.
The recorded echo data can be either a single shot (static
image) at a specific cardiac period or a video sequence
over cardiac cycles. A single cardiac cycle starts with
ventricular contraction (systole) and ends by ventric-
ular relaxation (diastole). Different echo modes can
be obtained using TTE [2], namely M-mode, B-mode,
and Doppler, each with purpose-specific characteristics.
These modes are typically used in an integrated fashion
to provide better visualization and diagnosis of various
cardiac conditions. Descriptions of echo modes can be
found in Appendix A.
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Institute, National Institutes of Health (NIH), MD, USA.

Existing approaches for analyzing echo data can be
broadly divided into manual and automated. In the
manual approach, echocardiographers manually select
good-quality end-systole and end-diastole frames fol-
lowed by delineating the desired region and measuring
cardiac indices. Examples of common cardiac indices
include ejection fraction (B-mode), peak velocity (spec-
tral Doppler), and posterior wall thickness (M-mode).
Complete list of cardiac indices can be found in [2]. This
manual approach has three limitations. First, it is error-
prone and suffers from high intra- and inter-reader
variability [3], [4]. Manual estimation of cardiac indices
is more challenging and prone to larger variability in
case of fetuses/infants [5] and animals [6] due to their
small cardiac size and unclear boundaries. Second, the
manual delineation is a tedious task requiring a signifi-
cant amount of time. This time commitment paired with
insufficient access to technicians increases the work-
load, which might lead to fatigue and distraction, and
therefore, inaccurate or delayed diagnoses [7]. Third,
cardiological expertise is a heavily burdened resource
and often unavailable in low-resource settings.

Automated echo analysis systems can provide a
timely, less subjective, and inexpensive alternative to the
manual approach. Such systems can control intra- and
inter-reader variability, greatly reduce the workload,
and address the shortage of cardiological expertise in
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low-resource settings. This paper provides a compre-
hensive and systematic review of existing automated
methods for four major echo tasks, namely quality as-
sessment, mode/view classification, segmentation, and
CVD diagnosis. The review covers three clinically used
echo imaging modes, which are B-mode, Doppler, and
M-mode. Previous reviews focus on other modalities
(e.g., MRI), single mode (B-mode), specific task (e.g.,
segmentation), or algorithm (e.g., deep learning).

For example, Litjens et al. [8] presents existing deep
learning algorithms for analyzing CT and echo modali-
ties. The paper focuses mainly on convolutional neural
network (CNN for classification) and fully convolu-
tional neural network (FCN for segmentation) applied
to B-mode images. Similarly, Meiburger et al. [9] re-
views existing FCN segmentation methods applied to
B-mode ultrasound images of the heart, abdomen, liver,
gynecology, and prostate. Other reviews of automated
segmentation methods applied to MRI and CT can be
found in [10], [11], [12]. A more focused review of
segmentation methods applied to B-mode fetal echocar-
diography is presented in [13]. For CVD diagnosis,
Alsharqi et al. [14] presents machine learning methods
applied to B-mode echo for disease classification. Simi-
larly, Sudarshan et al. [15] presents a review of machine-
learning method applied to 2D echocardiography (clas-
sification) and provide a summary of the most com-
monly used features for identifying a specific cardiac
disease (infarcted Myocardium tissue characterization).

Contrary to previous reviews, this paper presents
the first comprehensive and systematic review of au-
tomated methods for major echo tasks. It makes the
following contributions:

• It presents the current status and challenges of
existing automated echo analysis methods (Sec-
tion 2).

• It provides a summary of the metrics used to
assess the performance of various echo tasks
(Section 3).

• It systematically and comprehensively reviews
existing automated methods covering four ma-
jor tasks: echo quality assessment (Section 4.2),
view/mode classification (Section 4.3), segmen-
tation (Section 4.4), and CVD diagnosis (Section
4.5).

• The review covers all echo modes, namely B-
mode, M-mode, and Doppler. It also provides
a summary of the most commonly used clinical
and nonclinical features for identifying different
CVD from different echo modes.

• It presents descriptions of existing publicly avail-
able echo datasets (Section 5).

• It highlight the most pressing directions for fu-
ture research (Section 6).

Section 7 concludes the paper.

2 BACKGROUND

2.1 Echo Analysis: Artifacts and Challenges

The quality of echo data depends highly on the scanning
technique and configurations. Because most of echo
artifacts occur as a result of improper configurations
and acquisition, echo images of a specific cardiac tis-
sue acquired by different operators/vendors or under
different configurations can have different visual ap-
pearances. These variations can confuse cardiologists
and make the image interpretation task challenging.
Examples of the main artifacts in B-mode and M-mode
echo are: side lobe artifact, mirroring artifact, refraction
artifact, and shadowing artifact [16]. The main artifacts
of Doppler echo are: aliasing, mirroring, spectral broad-
ening, and blooming [16]. A robust automated echo
image analysis system should consider these variations
and artifacts by including a variety of dataset collected
from different machine configurations and operator set-
ting for the algorithm development and model training.

Another major challenge of echo analysis is the
presence of speckle noise. Speckle noise, which has a
granular appearance, is a multiplicative noise that oc-
curs when several waves of the same frequency and dif-
ferent phases and amplitude interfere with each other.
This type of noise can greatly degrade the quality of
the image, and therefore, the quality of the automated
algorithms. Several despeckling techniques have been
proposed to reduce the effect of speckle noise while
preserving structure and contextual features as well as
other useful information. We refer the reader to [17],
[18], [19], [20] for reviews of traditional despeckling
techniques and [21], [22] for deep learning-based de-
speckling techniques.

2.2 Current Status of Automated Echo Analysis

Existing automated echo analysis systems perform one
of the following tasks:

• Quality assessment provides a quality score for an
echo frame in real-time or classifies the acquired
echo frame as low-quality (unmeasurable) or
good-quality. Automating this task facilities the
analysis of subsequent tasks because it auto-
matically removes unmeasurable echo cases. For
example, automated quality assessment can be
used to exclude low-quality B-mode images with
unclear boundaries or unmeasurable Doppler
images with overlapped peaks (e.g., E and A
peaks of mitral valve flow are overlapped).

• Mode/View classification is the categorization of
acquired echo data into different modes (B-
mode, M-mode, Doppler) or cardiac views. Each
mode of echo can be recorded from different
views. For example, a comprehensive B-mode
acquisition involves imaging the heart from dif-
ferent windows or views by positioning the
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transducer in different locations [2]. The most
common B-mode views include [2]: Paraster-
nal Long Axis and Short Axis views (PLAX
and PSAX), Apical Two-chamber view (A2C),
Apical Three-chamber view (A3C), Apical Four-
chamber view (A4C), Apical Five-chamber view
(A5C), Subcostal Long and Short Axis Views
(SCLX and SCSX), and Suprasternal Notch View
(SSN). Similarly, Doppler can be acquired, using
continuous wave (CW) or pulsed wave (PW),
from different locations to measure the function
of different valves (e.g., aorta valve [AV], mi-
tral valve [MV]). This task can greatly enhance
subsequent tasks because it allows view-specific
segmentation and diagnosis.

• Boundary segmentation task involves delineating
the boundary or segmenting the area of a desired
region. This region can be a cardiac chamber in
B-mode images, wall in M-mode images, or a
spectral envelope in Doppler images. The seg-
mented region is then used to extract features or
cardiac indices followed by CVD classification.
Automating this task provides fast, accurate, and
objective segmentation over the whole cardiac
cycle with a minimum time cost.

• CVD classification is the detection or predica-
tion of specific cardiac disease based on im-
age features or calculated cardiac indices. Fully
automated machine-assisted or machine-based
screening and diagnostic systems have a sig-
nificant potential in providing high-quality and
cost-efficient health care to the patients in low-
resource settings.

The first step for all above-mentioned tasks is the
detection or localization of the region of interest (ROI).
Accurate ROI detection is an important step that in-
creases the performance and decreases the computa-
tional complexity of the method because it removes
irrelevant regions that confuses the algorithm. ROI de-
tection in case of B-mode images involves cropping the
anatomical area from the background (e.g., waveforms
and texts) while the ROI detection in Doppler images
involves cropping the Doppler signal region. As shown
in the tables (Table 2 – Table 5), the majority of exist-
ing works manually localize ROI in echo images prior
to further analysis. Other works use semi-automated
or fully automated methods to detect ROI in echo
images. However, these fully automated methods are
view-specific and built with specific assumptions (e.g.,
distinct chamber shape or fixed locations of Doppler
signal), and hence, might fail if these assumptions are
violated.

3 EVALUATION METRICS

This section summarizes different metrics used to eval-
uate the performance of different echo tasks. We broadly

divide these metrics into classification evaluation met-
rics and segmentation evaluation metrics.

3.1 Classification Evaluation Metrics
Classification metrics are derived from the confusion
matrix, which shows the number of correct and in-
correct classifications as compared to the ground truth
labels [23]. Examples of derived metrics include accu-
racy, error rate (ER), true positive rate (TPR), and true
negative rate (TNR).

Accuracy represents the number of instances (e.g.,
images or pixels) that are correctly classified di-
vided by the total number of instances in the dataset
( TP+TN
TP+TN+FP+FN ), where TP, TN, FP, and FN represent

true positive, true negative, false positive, and false
negative, respectively. ER measures the percentage of
incorrect classifications. Dividing the number of in-
stances that are incorrectly classified by the total num-
ber of instances gives ER; i.e., subtracting the accuracy
percentage from 100. TPR (a.k.a., recall or sensitivity)
measures the percentage of actual positive examples
that are correctly classified. TNR (a.k.a., specificity)
measures the percentage of actual negatives that are
correctly classified. ROC (Receiver Operating Charac-
teristic) curve [23] is another evaluation metric that is
commonly used in medical applications. ROC plots the
false positive rate (FPR) on X-axis and TPR on Y-axis
at different threshold settings of the classifier. A curve
that climbs toward the top-left corner indicates an ideal
classification performance. The area under the ROC
curve, known as AUC, is used to measure the quality
of the classification models. The value of AUC ranges
from 0 (worst) to 1 (best).

3.2 Segmentation Evaluation Metrics
Roughly, segmentation evaluation metrics can be classi-
fied as similarity-based metrics, distance-based metrics,
and statistical-based metrics.

Similarity-based metrics measure the similarity be-
tween the automatically segmented region and the man-
ually segmented region. This region can be left ventricle
(LV) cavity in B-mode images or spectral envelope
in Doppler images. Examples of the most common
similarity-based metrics include Jaccard similarity in-
dex (JSI) and Dice similarity index (DSI). JSI evaluates
the segmentation performance using TP, FP, and FN
rates as follows [24]: JSI = TP

TP+FP+FN , where TP
represents the pixels that are correctly classified as the
target cardiac region, FP represents the background
pixels that are falsely classified as the target region, and
FN represents cardiac pixels that are falsely classified
as background. DSI is another similarity-based metric
that measures the similarity or intersection between
the automatically labeled pixels and manually labeled
pixels. Mathematically, this metric is formulated as fol-
lows [24]: DSI = 2×TP

2TP+FP+FN . The main difference
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TABLE 1
Strengths and limitations of algorithm categories

Algorithm Category Strengths Limitations
Low Level Image Processing Simple implementation Sensitive to the image’s noise and artifacts
(e.g., Thresholding and Edge Detection) low computational complexity Perform poorly when applied to obscured images

and images with unclear boundaries, non-uniform
regional intensities, and confusing structures

Deformable Models Can segment any shape Sensitive to the initial contour location/shape
(e.g., Active Contour Model) Highly flexible Perform poorly when the shape vary widely

Tend to become computationally complex
Statistical Models Use intensity and shape Require proper initialization
(e.g., Active Appearance Model) information Expensive manual shapes annotations

Highly effective Perform poorly when the shape vary widely
Local minimum trap

Conventional Machine Learning Good to high performance Look at specific handcrafted features
(e.g., Random Forest Trees) Good interpretability Bias of engineer who designs the method

Require a set of annotated data
Deep Learning Superior performance Require a large set of annotated data
(e.g., Convolutional Neural Network) Long tuning/training process

Lack of interpretability

between JSI and DSI is that DSI counts TP twice while
JSI counts TP once. The value of both JSI and DSI ranges
from 0 to 1, where 0 indicates complete dis-similarity
and 1 indicates complete similarity. Intersection over
Union (IoU) is another metric that calculates the in-
tersection between two regions by dividing the area of
overlap between them by the area of union.

A single evaluation category can perhaps not be
enough to evaluate the performance of a segmentation
algorithm. In addition, similarity-based metrics only
report the degree of overlapping and do not report or
consider the location or distance between the segmen-
tation and ground truth. Distance-based metrics, on the
other hand, consider how far apart the segmentation
and ground truth are from each other. Average Contour
Distance (ACD) and Average Surface Distance (ASD)
are two distance-based metrics that are commonly used
to evaluate regions segmentation. Both ACD and ASD
are measured in millimeter (mm) [24].

Statistical-based metrics are used to measure the
correlation between the automatic and manual segmen-
tation. Specifically, statistical-based metrics evaluate the
accuracy of segmentation by measuring the correlation
between the cardiac indices calculated based on the
automatic segmentation and the manual indices. Cor-
relation coefficients (CC) and Bland-Altman agreement
(B&A) are two important statistical metrics that are
commonly used to evaluate the performance of car-
diac segmentation. CC measures the correlation or the
agreement between two sets of data. The mathematical
formula of CC, which can be found in [25], returns a
value that ranges from -1 to 1, where 1 indicates a strong
positive correlation, -1 indicates a strong negative cor-
relation, and 0 indicates no correlation. B&A measures
the agreement between two set of measurements or data
using the mean difference and limits of agreement. The
mathematical formulation of B&A and comparison with
CC metric can be found in [26].

4 AUTOMATED ECHO ANALYSIS

As computing technology and machine intelligence
algorithms evolve, automated analysis of echocardio-
grams have the potential to improve clinical workflows
and enhance diagnostic accuracy. This section provides
a comprehensive review for existing automated meth-
ods of four tasks: echo quality assessment, mode/view clas-
sification, boundary segmentation, and CVD classification.
The automated methods of these tasks can be divided,
based on the underlying algorithm, into low level
image processing-based methods, deformable model-
based methods, statistical model-based methods, con-
ventional machine learning-based methods, and deep
learning-based methods. Table 1 summarizes the ad-
vantages and disadvantages of these five algorithm
categories.

4.1 Literature Review Design
To ensure the reproducibility of this review, we present
our search and selection strategies. A flowchart of our
literature review is depicted in Figure 1.

4.1.1 Search Strategy
We did a systematic review of automated echocardio-
graphy using PubMed, IEEE Xplore, Google Scholar,
Google Datasets, ACM Digital Library, CiteSeer, PLOS
ONE, and Scopus search engines. We searched for sci-
entific conferences, journal articles, technical reports,
and dataset papers published up to February 2020, and
retrieved relevant literature by using a combination of
keyword terms. Examples of these terms include cardiac
imaging; automated echo analysis and interpretation;
echo review/survey; echo mode/view classification;
echo disease classification; echo quality assessment;
image-based analysis echo; machine learning-based
analysis echo; deep learning-based analysis echo; cham-
ber/envelope/wall segmentation echo; and echocardio-
graphic datasets. Terms related to echocardiographic
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Fig. 1. Flowchart of our review. The histogram associated with each
mode represents the number of automated works for each task.

hardware and other cardiac imaging modalities (e.g.,
CT and MRI) are excluded because they are outside
the scope of this review. We retrieved, using this search
strategy, a total of 193 studies.

4.1.2 Selection Strategy
We included a study if all of the following criteria
are fulfilled: (1) the full text is written in English; (2)
the study includes a clear description of the technical
method and used dataset; (3) the study is published
as a full conference paper, journal article, open access
article, or technical report; and (4) the study is published
the year of 2004 or after because a rising amount of in-
terest and publications in automated echocardiography
analysis using image processing and machine learning
sprouted around that time. We screened the retrieved
papers independently and excluded the ones that failed
to adhere to these criteria. We included, using this
strategy, a total of 94 papers in this systematic review.
The selected papers are loaded into EndNote X8 and
categorized into different groups.

4.2 Quality Assessment
Unlike other cardiac imaging modalities, the diagnostic
accuracy of echocardiography is highly dependent on
the image quality at the acquisition stage. Therefore,
the quality of the acquired echo depends highly on the
technician’s expertise. Automated echo quality assess-
ment task provides a quality score of a given image or
categorizes this image as low- or good-quality. These
methods can aid during echo acquisition by provid-
ing real-time feedback and automatically rejecting low-
quality cases. We divide existing automated quality
assessment methods into two categories: model-based
methods and deep learning-based methods. Table 2

summaries current automated methods for echo quality
assessment.

4.2.1 Model-based Methods

One of the first automated methods for assessing echo
quality is presented in [27]. The proposed method mod-
els the four chambers (left ventricle [LV], right ventricle
[RV], left atrium [LA], right atrium [RA]) of A4C view
by a non-uniform rational B-splines (nUrBs) using 12
control points. Then, the nUrBs models for all chambers
are joined by similarity transforms to create a complete
view model. Finally, the model goodness-of-fit is used to
calculate a quality score. The proposed method is tuned
using 35 B-mode (A4C) echo videos recorded from 4
healthy volunteers. The recorded videos include both
good quality and completely erroneous quality. Each of
the recorded video is scored as having good, fair, or
poor quality by 2 cardiologists. The proposed method
improved the quality of the recorded A4C images from
poor to fair or good by 89% (i.e., 8 of 9 cases were
improved).

Another B-mode echo quality assessment method is
presented in [28]. The presented method assesses the
quality by comparing the structure of a representative
atlas (model) with the structure of the input image. The
structure of PLAX atlas is generated from 89 manually
segmented images while the structure of the input
image is generated using thresholding and the Gener-
alized Hough Transform (GHT). The proposed method
is evaluated using echo data (133 PLAX images) of 35
normal and hypertrophic patients. Each image is scored
by an expert sonographer as poor, moderate, and good
visibility. The automatically generated scores achieved
good correlation with manual ratings (correlation coef-
ficient = 0.84).

Although model-based methods for echo quality as-
sessment can achieve good performance, these methods
are view-specific because they require to generate a
specific model or template for each view. In addition,
the accurate generation of the template relies heavily on
human experts or the image’s contrast. For example,
methods of Snare et al. [27] and Pavani et al. [28]
are designed for a specific B-mode view (A4C [27] or
PLAX [28]), require manual annotation [28], and both
rely heavily on the presence of the sharp edges in the
image; i.e., they would fail when applied to low contrast
images.

4.2.2 Deep Learning-Based Methods

Abadi et al. [29] proposed a regression CNN architec-
ture for assessing the quality of B-mode videos (A4C
view). The proposed architecture is composed of two
convolutional layers, each followed by Rectified Linear
Units (ReLU), two pooling layers, and two fully con-
nected layers. The loss function (L2 norm) outputs the
Euclidean distance of the network score to the manual
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quality score. The proposed regression CNN architec-
ture is trained using stochastic gradient descent (SGD),
a batch size of 16, a momentum of 0.95, weight decay of
0.02, and initial learning rate of 0.0002. The architecture
is trained using 2,344 end-systolic A4C frames. Evalu-
ating the performance on 560 test set achieved a mean
absolute error (MAE) of 0.87± 0.72.

Abadi et al. [30] extends their previous work [29]
to include other cardiac views, namely A2C, A3C,
A4C, PSAX at the aortic valve, and PSAX at the
papillary muscle, as well as echo cine loops instead
of static frames. The proposed multi-stream network
architecture consists of five regression models with
the same weights across the first few layers. The last
layers of the proposed architecture are view-specific
layers. Similar to [30], the loss function (L2 norm)
for each view computes the Euclidean distance of
the network score to the manual quality score. The
proposed architecture is trained using Adam optimizer
and random initialization. This method, which is
trained using 4,675 cine loops, achieved a mean quality
score accuracy of 85%±12 when applied to testing cine
loops (1144).

In summary, there has been a little effort [27], [28],
[29], [30] to create automated methods for B-mode
echo quality assessment. In the case of M-model, we
are not aware of any automated method for assessing
the quality of the acquired M-mode images. As for
Doppler, we are only aware of a recent deep learning-
based method presented by Zamzmi et al. in [31]. The
proposed method, which was trained on labeled images
(good- and bad-quality) representing a wide range of
real-world clinical variation, achieved 88.9% overall ac-
curacy. We refer the reader to [31] for a detailed descrip-
tion of the method and presentation of the results.

Existing methods for assessing B-mode echo quality
can be divided into model-based methods and deep
learning-based methods. As shown in Table 2, deep
learning-based methods [29], [30] achieved better per-
formance as compared to model-based methods [27],
[28]. The higher performance in deep learning-based
methods could be attributed to a broader dataset ex-
ploited in the study [29], [30] as well as a more com-
plex feature extraction and model learning. In addition,
the deep learning-based method proposed in [30] is
evaluated in a dataset collected from different US ma-
chines under different configurations in opposition to
the methods presented in [27], [28]. Such setting for data
collection ensures that the proposed method would be
clinically relevant. Another advantage of deep learning-
based methods is that these methods do not require the
user to build a model or template for each view.

In the future, we would expect to see increasingly
more deep learning methods to extend existing B-mode
quality assessment methods, and to include quality
assessment for all echo modes and views collected using

multiple vendors under different configurations. Also,
we would expect to integrate quality assessment task
into acquisition software to provide a quality score for
recorded echo frames in real-time.

4.3 View Classification

Mode or view classification is the categorization of echo
images into different cardiac modes (e.g., B-mode) or
views (e.g., A4C). Automating this task offers two main
benefits. First, it facilities the organization, storage, and
retrieval of echo images. Second, it is important for
automating subsequent tasks. For example, measuring
the function of a specific valve requires knowing the
view beforehand because different views show differ-
ent valves. We broadly categorize existing methods for
mode/view classification into: conventional machine
learning-based methods and deep learning-based meth-
ods. Table 3 provides a summary and quantitative com-
parisons of these methods.

4.3.1 Conventional Machine Learning-Based Methods
These methods use handcrafted features extracted from
a detected ROI region with conventional machine learn-
ing classifiers to perform view classification. For exam-
ple, Wu et al. [32] proposed a global approach that uses
GIST descriptor with support vector machines (SVM)
for classifying 8 B-mode views: PSAX, PLAX, A2C,
A4C, SC4C, SC2C, SCLX, and other. GIST descriptor
computes the spectral energy of the image and outputs
a single feature vector. It uses blocks (4 pixels × 4 pixels)
that contains several oriented Gabor filters to model
the structure of the image. The final feature vector that
represents the entire image is generated by moving
these blocks over the image to generate spectrograms
followed by concatenating the generated spectrograms.
The extracted feature vectors for all images are used
to train a probabilistic SVM. The proposed method
achieved 98.51% overall accuracy when evaluated on
a testing set. Other methods that use descriptors similar
to GIST with SVM can be found in [33] (Scale-invariant
feature transform [SIFT] descriptor) and [34] (histogram
of oriented gradients [HOG] descriptor).

An earlier machine learning-based method for view
classification is presented in [35]. The first stage of
this method involves training LV detectors for four B-
mode views (A4C, A2C, PLAX, PSAX) using a previ-
ous approach that incorporates Haar-wavelet type local
features and boosting learning technique. Then, global
templates (A4C/A2C template, PLAX template, and
PSAX template) are constructed based on the detected
LV regions and sent to multi-class classifiers. Each clas-
sifier is trained using the training images provided by
its detector. The final classification is obtained by fusing
the classes of all views. The proposed method achieved
a classification accuracy over 96% when evaluated on a
testing set. This method requires a consistent presence
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of LV in all views, which limits its usage to cases that
hold this constraint.

Instead of building individual LV detectors for each
view, Ebadollahi et al. [36] proposed a method that
detects the location of chambers using a generic de-
tection approach (GSAT detector). The method models
the spatial relationships among cardiac chambers to
detect different views. For each view, the chambers spa-
tial relationships and the statistical variations of their
properties are modeled using Markov Random Field
(MRF) relational graph. The method depends on the
assumption that if any two images contain the same
chambers where each chamber is surrounded by similar
chambers, then the probability that these two images
belong to the same view is high. Each model or ”cardiac
constellation” is assigned a vector of energies according
to the different view-models. The energy vectors ob-
tained from all the training images are used to build
a multi-class SVM. Evaluating the proposed method
using leave-one-video-out cross validation (LOOCV)
achieved up to 88.35% average precision. The dataset
that is used for training and testing the method contains
15 normal echo videos, 6 abnormal echo videos, and
10 B-mode views: 2 PLAX views, 4 PSAX views, and 4
apical views. The normal cases are used for training and
testing, and the abnormal cases are used only for testing.
A main limitation of this method includes sensitivity to
ROI detector, noise, and image transformation.

The methods presented in [32], [33], [34], [35], [36]
use spatial features extracted from static images instead
of videos. In [37], Kumar et al. incorporates temporal or
motion information with spatial features to classify 8 B-
mode views: A2C, A3C, A4C, A5C, PLAX, PSAX, PSAP,
and PSAM. The method starts by manually locating the
ROI region in all videos followed by aligning (affine
transform) these videos using the extreme corner points
of the fan sector. Then, optical flow is applied to each
frame to obtain the motion magnitude. Because motions
in echo video are only useful when it is associated with
the anatomical structures, the motion magnitude images
are filtered using an edge map on image intensity. After
obtaining the edge-filtered motion maps, several land-
mark points are detected using SIFT descriptor. Once
the salient features are detected and encoded for each
frame, the salient features of all frames in the training
dataset are used to construct a hierarchical dictionary.
This dictionary is used to train a kernel-based SVM.
To classify a new input video, the trained classifier
provides a label for each frame in the given video and
used majority voting to decide the final class label of the
video. The proposed method, which is trained using 113
videos, achieved 51%-100% correct classification rates
when evaluated on a testing set. The main strength of
this method is that it does not require constructing spa-
tial and temporal models for each cardiac view. Other
conventional-based methods for view classification are
presented in [38] (bag of visual words with SVM),

[39] (gradient features and logistic trees), [40] (visual
features and boosting), [41] (B-spline and thresholding),
and [42] (histogram features and neural network).

Instead of using handcrafted features with tradi-
tional classifiers, convolutional neural network (CNN)
can provide objective features extracted directly from
the image at multiple level of abstractions while pre-
serving the spatial relationship between the image pix-
els. These networks achieved state-of-the-art perfor-
mance in different medical domains, including echocar-
diography.

4.3.2 Deep Learning-Based Methods
Recent works utilize CNN architectures for feature ex-
traction and classification. Examples of CNN architec-
tures that have been used for cardiac view classification
include VGG [43], DenseNet [44], and ResNet [45].

For example, Zhang et al. [46] used VGG CNN [43]
for distinguishing 6 B-mode views: A2C, A3C, A4C,
PLAX, PSAX, and other. Prior to feature extraction and
classification, each frame is converted into grayscale
and re-sized (224×224). The re-sized image is then sent
to VGG [43]. The output of the network is the view
that has the highest probability of Softmax function.
The entire network is trained using 40,000 pre-processed
images with ADAM optimizer, 1 × 10−5 learning rate,
mini-batch size of 64, and 20 epochs. Testing the trained
network using cross-validation protocol achieved ex-
cellent accuracy (e.g., 99% accuracy for A4C views).
Zhang et al. expanded their work in [47] to distinguish
23 different echo views. The codes and model weights
for both works are available online [46], [47]. Similarly,
Madani et al. [48] used VGG-based [43] method to dis-
tinguish 15 different echo views: 12 views from B-mode
(e.g., PLAX and A4C), M-mode, and two Doppler views
(CWD and PWD). The final layer of VGG-16 performs
classification using Softmax function with 15 nodes. The
network is trained using RMSprop optimization over 45
epochs. The overall test accuracy of distinguishing 12
views of B-mode images is above 97%. The accuracies
of distinguishing CWD, PWD, and M-mode views are
98%, 83%, and 99%, respectively.

Another recent architecture for cardiac view clas-
sification is presented in [49]. The proposed cardiac
view classification (CVC) architecture is designed and
trained to distinguish 7 B-mode views, namely A2C,
A4C, PLAX, PSAX, SC4C, SCVC, and ALAX, as well as
unknown view. The pre-processing stage involves nor-
malizing the image and down-sampling it to 128× 128.
The input image is then sent to a series of deep learning
blocks where each block consists of convolution layer,
max-pooling layer, inception layer, and concatenation
layer. This network is trained over a maximum of 100
epochs using Adam optimizer and a mini-batch size
of 64. Cross-entropy and mean absolute error (MAE)
loss functions are used for computing the error and
updating the weights, which are initialized using Uni-
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form method. Ten fold patient-based cross-validation
technique is used for training and validation (265,649
frames) while an independent set of unseen data
(229,951 frames) is used for testing. The proposed CVC
network achieved 97.4% and 98.5% overall accuracies
for frame-level and sequence-level view classification.

A lightweight cardiac view classifier is introduced
recently by Vaseli et al. [50] to distinguish 12 B-mode
views. Several deep learning lightweight models are
built based on three CNN architectures, VGG-16 [43],
DenseNet [44], and ResNet [45]. These lightweight mod-
els contain approximately 1% of regular deep models’
parameters and they are 6 times faster at run-time. The
training parameters for all the deep and lightweight
models can be found in [50]. These models are trained
and evaluated using 16,612 echo videos collected from
3,151 patients. Combining the three lightweight models
achieved an accuracy of 88.1% in classifying 12 cardiac
views.

Instead of only extracting deep features from static
images, Gao et al. [51] fused the output of spatial and
temporal networks to classify the cardiac view of echo
videos. The spatial CNN takes a 227× 227 frame as in-
put and sends the input frame to 7 convolutional layers
for deep features extraction. The temporal CNN takes
as input the acceleration image, generated by applying
optical flow twice, and sends this image to 7 convolu-
tional layers for feature extraction. Then, the output of
spatial and temporal CNNs are fused together. The final
view classification is obtained by the linear combination
of both CNNs scores using Softmax function, which
provides the probability of 8 classes (A2C, A3C, A4C,
A5C, PLA, PSAA, and PSAP). Both networks are trained
using a random initialization, 0.01 learning rate, and 120
epochs. Evaluating the proposed method on 152 echo
videos achieved 92.1% accuracy. The accuracy of view
classification using only the spatial CNN is 89.5%.

Table 3 provides a summary of automated view
classification methods. As shown in the table, deep
learning-based methods for view classification achieved
excellent performance comparable to the human inter-
observer performance, and outperform conventional
methods in various views (e.g., A3C, A5C, PSAM, [37]
vs [51]). In addition, deep learning-based methods are
evaluated using larger datasets collected by different
machines as compared to the conventional machine
learning-based methods. These results suggest the su-
periority of deep learning-based methods in the pres-
ence of relatively large datasets. This indicates better
generalizability of these methods across machines and
settings. Deep learning methods, however, suffer from
interpretability and transparency issues (black box).

To summarize, the majority of current automated
methods focus on detecting different views of B-mode.
Only a few works [31], [48] includes other echo mode
such as M-mode and Doppler. Because automated view

classification is critical to obtain a fully automated and
real-time system that can be used efficiently in clinical
practice, there is a need for future research focus on de-
veloping automated and lightweight view classification
for all echo modes (B-mode, M-mode, and Doppler).

4.4 Boundary Segmentation
The current practice for cardiac boundary segmentation
requires technicians to perform manual delineation fol-
lowed by using the traced boundaries for computing
structural and functional indices. This practice is te-
dious, error-prone, and subject to high intra- and inter-
readers variation. In this section, we review automated
methods for segmentation in B-mode, Doppler, and M-
mode images, and provide a summary in Table 4.

4.4.1 B-mode, Chamber Segmentation
We categorized the methods of chamber segmenta-
tion into five categories (Table 1): low level image
processing-based methods, deformable model-based
methods, statistical model-based methods, conventional
machine learning-based methods, and deep learning-
based methods.

Low Level Image Processing-based Methods: Melo et
al. [52] proposed a low level image processing-based
method for segmenting LV chamber. The proposed
method has two main modules: pre-processing module
and segmentation module. The pre-processing module
takes a raw image, performs filtering and morpho-
logical operations, and sends the processed image to
the segmentation module. This module uses watershed
algorithm for segmenting LV border (PLAX view). After
detecting LV border, several structural indices, such
as LV area, are computed. The proposed method is
evaluated using videos of 12 healthy volunteers and
measured using eight different metrics [52]. Amorim et
al. [53] uses a method similar to [52] for segmenting LV
border in PLAX image. The main difference between
[52] and [53] is that Amorim et al. [53] applies the
watershed algorithm to a composite image obtained by
combining the images of three cardiac cycles; this allows
to exploit the similarity of corresponding frames from
different cycles. As visually reported in [53], using the
composite image led to increased delineation accuracy.

Instead of segmenting a specific chamber, John and
Jayanthi [54] presented a low level image processing-
based method for segmenting all cardiac chambers. The
method starts by converting a 2D echo video (2 to 3
seconds) to grayscale frames. It then applies Speckle
Reducing Anisotropic Diffusion (SRAD) filter to remove
speckle noise from the image. To approximate the cham-
ber locations, k-means algorithm is applied to create
clusters of pixels with similar intensities followed by
thresholding using an empirically determined value.
Visual results demonstrated good agreement between
the contour obtained by the proposed method and the
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manual contour. This method fails to segment frames
that have low contrast or dropouts on LV internal walls.

Other low level image processing-based methods
for chamber segmentation can be found in [55] (wa-
tershed algorithm), [56] (Otsu thresholding and edge
detection), [57] (thresholding and morphological oper-
ations), [58] (watershed algorithms), and [59] (thresh-
olding and morphological operations). The methods
of this category are easy to implement and have low
computational complexity as compared to the methods
of other categories. However, these methods are highly
sensitive to the signal-to-noise ratio (SNR). In addition,
these methods perform poorly, and might completely
fail, in detecting the border in images with obscure
boundaries, non-uniform regional intensities, and con-
fusing anatomical structures (e.g., valve).

Deformable Model-Based Methods: Chen et al. [60] gen-
erates the active contour of LV by solving a coupled
optimization function that combines shape and inten-
sity priors. The first optimization part is the weighted
sum of the energy of the geometric contours of simi-
lar shapes. Minimizing this energy provides the initial
contour and the transformation that aligns it to the
prior shape. The geometric contours of all shapes, which
are used to generate the prior shape, are obtained by
manually tracing the cardiac boundaries of 85 images
captured from 61 patients at end-diastole (ED). The
second optimization part provides the optimal estimate
of the weight by maximizing the mutual information
of the image geometry (MIIG). The process of solving
both parts generates the final LV segmentation. The
visual results demonstrate that the proposed method
can provide LV contours that are close to the contours
provided by experts. It also shows that using MIIG
provides a better description than MI (mutual informa-
tion) because MIIG takes into account the neighborhood
intensity distribution. MIIG, however, has a significant
computational cost. A simpler active contour-based
method is presented in [61]. The method combines
Hough transform and active contour to detect LV in
PSAX and PLAX images. Hough transform is used to
generate LV initial shape. Active contour is then used to
generate, via energy minimization, the final exact shape
of LV. The detected LV border is used to calculate the
following indices: LV areas in PSAX and PLAX views,
LV volume, LV mass, and wall thickness.

Conventional active contour methods suffer from
slow convergence. In [62], Marsousi et al. used B-
spline snake algorithm for segmenting the endocardial
boundary of LV chamber. The presented method does
not require expensive optimization computation and is
faster than conventional active contour methods. The
main limitation of this method lies in the selection of the
initial contour; i.e., if the selected initial contour lies far
from the actual boundary, higher iterations of balloon
force or Gradient Vector Flow [63] should be executed,

which causes error and leads to tremendous increase in
the time complexity. To avoid this problem, the method
requires experts to manually select some points inside
LV chamber. To automate the point selection, Marsousi
et al. extends their method in [64] to select the best initial
contour using a novel active ellipse model. Particularly,
the intersection point of all chambers in A4C view
is detected at the nearest point to the mass center.
After detection the point, an initial ellipse is placed on
the top-left side of the point followed by growing the
initial ellipse until it fits the boundary. This method is
tested using 20 A2C and A4C images collected from
normal and abnormal cases. A comparison between
this approach [64] and the previous approach [62] is
performed using Dice’s Coefficient (90.66±5.17 [62] and
92.30 ± 4.45 [64]) and computational time (1.52 ± 0.82
[62] and 0.63± 0.29 [64]).

Other deformable-based methods for chamber seg-
mentation can be found in [65] (Speckle resistant Gra-
dient Vector Flow and B-spline), [66] (variational level
set approach), [67] (k-means and active contour), [68]
(constrained level-set), [69] (phase-based level set evo-
lution), [70] (phase-based level set evolution), and [71]
(active contour model and SIFT). Although deformable-
based methods provide accurate segmentation, these
methods are view-specific and hence do not perform
well with widely varying shapes. In addition, these
methods are highly sensitive to the initial contours and
tend to become computationally complex.

Statistical Model-Based Methods: One of the first works
that use statistical model for LV segmentation is pre-
sented in [72]. The proposed framework consists of
three main stages: global despeckling, Active Appear-
ance model (AAM) training, and LV segmentation. The
global despeckling reduces speckle noise while main-
taining the important image features. The second stage
involves generating AAM model that represents the
shape and texture of all end-diastole (ED) and end-
systole (ES) images in the training set. To model the
shape from the training images, the manually labeled
contour and four landmark points in each image are
used to align and register the images in the training set.
The appearance model of AAM is generated using a
weighted concatenation of three parts: the intensities of
the original image shape, the intensities of the denoised
image shape, and the mean gradient at each of the four
landmark points. The final AAM model is constructed
from the eigenvectors of the largest eigenvalues that
are obtained by applying PCA to the combined model
(shape and texture model). The third stage involves po-
sitioning the model in a new target image by solving an
optimization problem. The proposed approach is tested
using two fetal datasets: synthetic fetal echo images and
clinical fetal echo images. The overall segmentation ac-
curacies of the proposed method are 84.12% and 84.39%
for synthetic and clinical images, respectively. The vi-
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sual results demonstrate the superiority of the proposed
method as compared to methods that use active shape
models (ASM) [73], [74] as well as conventional AAM
and constrained AAM [75].

Statistical based methods for chamber segmentation
are view-specific and sensitive to the large variations
in shape or appearance; i.e., cannot handle the large
variations in chamber shape and appearance. Also,
these methods can easily be trapped in local minima
and require manual annotation.

Conventional Classification-Based Methods: The meth-
ods in this category utilize traditional machine learning
approaches for labeling each pixel as chamber or back-
ground.

A machine learning-based method for fetal cham-
bers segmentation is presented in [76]. The method
starts by initializing a dictionary D0 as a random
matrix and computing the sparse coefficients of this
matrix (X0) from the training samples using Orthogonal
Matching Pursuit (OMP). To generate a compact dic-
tionary, sub-dictionaries (atoms) with utilization ratios
less than a pre-determined threshold is discarded fol-
lowed by updating the atom indices and coefficients to
obtain a new group dictionary. After learning the group
dictionary D, a new test sample is converted to two
sparse coefficients Xout and Xin with respect to Dout

and Din sub-dictionaries, where out and in subscripts
indicate the area outside and inside the chambers. The
corresponding reconstruction residue Rout and Rin are
then calculated using a proposed reconstruction residue
function.

The final boundary is obtained by classifying each
pixel in the sample image as one or zero using the cal-
culated minimum reconstruction residue. The proposed
method, called Adaptive Group Dictionary Learning, is
evaluated using 40 clinical fetal echocardiograms. The
experimental results demonstrate the efficiency of the
proposed method as compared to previous machine
learning-based methods [77], [78]. The construction of
only two sub-dictionaries limits the proposed method
to images that have two intensity patterns, and suggest
that it might fail when applied to images with several
intensity patterns.

Deep Learning-Based Methods: Semantic CNNs divide
the image into different objects by labeling each pixel
with the class of its enclosing object. These networks
consist of only convolution and pooling layers orga-
nized in an encoder-decoder structure.

In [46], four separate semantic U-net models [79] are
trained for segmenting the cardiac structures in PLAX,
PSAX, A2C, and A4C views. The number of training
data (images and masks) for each model are 128, 72, 168,
and 198 for PLAX, PSAX, A4C, and A2C, respectively.
The training data for all models are augmented using
cropping and blacking out techniques. All the models
are trained using ADAM optimizer, 1 × 10−4 learning

rate, 1 × 10−6 weight decay, 0.8 middle layers drop
out, mini-batch size of 5, and 150 epochs. The trained
models achieved good to excellent performance with
IoU values that range from 73 to 92. The segmented
cardiac chambers for each image is used to compute ge-
ometric dimensions, volumes, mass, longitudinal strain,
and ejection fraction. These indices are then used for as-
sessing cardiac structure and function. As discussed in
the paper, the proposed automated framework showed
superior performance as compared to manual measure-
ments across all cardiac indices. Recent studies that use
U-net and FCN for chamber segmentation can be found
in [80], [81].

Machine learning-based methods (conventional and
modern) for chamber segmentation showed excellent
performance and outperformed the performance of
human experts. However, building robust machine
learning-based methods require a relatively large and
well-annotated datasets. Also, these methods, especially
deep learning-based, can be computationally expensive.
Further, these methods may segment pixels outside the
desired cardiac region due to the lack of model con-
straint. Finally, existing deep learning-based methods
lack interpretability; i.e., they do not interpret nonlinear
features or show the important human-recognizable
clinical features.

4.4.2 Doppler, Envelopes Segmentation
The accurate tracing of spectral envelopes and estima-
tion of maximum velocities in Doppler images has a
great clinical significance. We review next existing meth-
ods for spectral envelope segmentation, and provide a
summary in Table 4.

Low Level Image Processing-Based Methods: Zolgharni
et al. [82] presented a thresholding-based method to de-
tect spectral envelopes in long Doppler strips that span
over several heartbeats. The analysis of long Doppler
strips allows to extract additional velocity measures and
leads to better understanding of the cardiac function.
The method starts by manually locating the Doppler
region (ROI) followed by converting pixel to velocity
on the vertical axis and pixel to time on the horizontal
axis. The baseline (zero velocity) is then determined
and used to separate the negative Doppler profiles.
Positive Doppler profiles are detected using a proposed
objective thresholding method. The generated binary
images are further processed to remove small connected
areas. Finally, maximum velocity profiles are obtained
using the biggest-gap algorithm as follows. A column
vector is scanned from left to right to find a gap (cluster
of consecutive black pixels). The largest gap from the
top is selected as a point on the profile. The final output
of the Biggest-Gap algorithm represents the maximum
velocity envelope. This envelope is further smoothed
using a low-pass first-order Butterworth filter. To extract
Doppler indices from the spectral envelopes, Gaussian
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model is fitted to the velocity profile and used to calcu-
late peak velocity and velocity time integral. The auto-
mated measurements of velocity-time-integral showed
strong correlation (r = 0.94) and good Bland-Altman
agreement (SD = 6.9%) with the expert values. Similarly,
the automated measurement of peak-velocities showed
strong correlation (r = 0.98) with the expert values.

Another low level image processing-based method
is presented in [83]. The proposed method extracts
three Doppler indices, namely peak pressure gradient,
peak velocity, and pressure half time, from the spectral
envelopes for the purpose of assessing the severity of
aortic regurgitation (AR). The method starts by locating
the Doppler ROI based on the fixed locations of the ver-
tical and horizontal axes (specific assumption). Before
applying edge detector, several pre-processing opera-
tions such as noise filtering and contrast adjustment are
performed. Then, Canny edge detector is applied to seg-
ment the spectral envelope. Once the envelope is seg-
mented, the horizontal and vertical axes are converted
into time and velocity. Finally, the curve is scanned to
detect the highest peak value, which is used to compute
the peak pressure gradient and pressure half time. To
evaluate the performance of the proposed method, the
automatic indices, computed from Doppler images of
11 subjects, are compared with human assessment. The
results proved the feasibility of using the proposed
algorithm in assessing the severity of AR as it showed
strong correlation with human assessment for three age
groups: 0.98 correlation for group 1 (20-35 years old),
0.92 correlation for group 2 (36-50 years old), and 0.83
correlation for group 3 (51-60 years old).

Texture analysis is a low level image operation that
involves detecting regions in a given image based on
their texture content (i.e., spatial variation in pixel in-
tensities). Applying texture filters to an image returns
a filtered image. Each pixel of this new image is a
statistical representation of a neighborhood around this
pixel in the original image. Biradar et al. [84] proposed
to use combinations of three texture filters, which are
entropy, range, and standard deviation, to detect the
envelope in CW Doppler images. The filtered image is
then thresholded and processed morphologically using
erosion and dilation operations. The proposed method
is evaluated using CW images of 25 patients suffer-
ing from aortic regurgitation. The experimental results
showed that using a combination of entropy, range, and
standard deviation filters can accurately delineate the
spectral boundaries of CW Doppler images.

Other low level image processing-based methods
for detecting velocity profiles can be found in [85]
(thresholding and edge detection), [86] (Otsu threshold-
ing), [87] (empirical thresholding and Random sample
consensus), [88] (thresholding and edge detection), [89]
(local adaptive thresholding), and [90] (thresholding
and edge detection). Low level image processing-based
methods can detect spectral envelopes of different blood

flows without any pre-training and with a minimum
amount of data. However, these methods are very sen-
sitive to the image noise and artifacts as well as the
image contrast and intensity patterns.

Deformable-Based Methods: Gaillard et al. [63] inves-
tigated the use of active contour for detecting Doppler
spectral envelopes. The initial snake is generated using
an automated method presented in [65]. The final snake
of the envelope is then found by minimizing the internal
and external energy functions using the generalized
gradient vector flow field (GGVF) [63]. The detected
envelopes are used to extract several indices (e.g., veloc-
ity time integral). These indices are strongly correlated
(r=0.99) with the indices computed manually by human
experts. Other contour-based method for cardiac and
Doppler segmentation are presented in [91], [92]. As
shown in these works, the shape and location of the
initial contour greatly impacts the process of segmenta-
tion; additionally, these methods might require manual
annotations and tend to be computationally expensive.

Model-Based Methods: Kalinic et al. [93] proposed a
model-based method for segmenting the velocity profile
in CW images. The segmentation process consists of two
main steps: registration step and transferring step. The
registration step generates a set of parameters that de-
scribe the geometric transformation of target-reference
mapping. The reference image (model) is chosen to be
the least different from the rest of the images in the
dataset. This reference image is chosen by calculating
the mutual mappings of all the images as described
in [93]. After selecting the reference image, the veloc-
ity profile of this image is segmented manually by a
cardiologist. The velocity profile of a new target image
can be obtained by geometrically transferring, using the
parameters obtained in the registration step, the profile
of the reference image (model) to target image. The
proposed method is evaluated using 59 velocity profiles
extracted manually from CW images [93]. Instead of
manually selecting the reference image, Kalinic et al.
[94] extended [93] and used an atlas generated from
CW Doppler images of healthy volunteers to register
a new target image. The atlas image (reference image)
is the statistical average of all images constructed using
the arithmetic image averaging operation as discussed
in [94]. Detailed presentation of the atlas model and
discussion of results can be found in [94]. A recent
model-based method that uses an atlas for constructing
the spectral envelope is presented in [95].

Although model-based methods have been success-
fully used in spectral envelopes segmentation, these
methods have difficulty handling the Doppler varia-
tions among patients and various disease types. Fur-
thermore, they require manual annotation, and can be-
come computationally expensive.

Machine Learning-Based Methods: Park et al. [96] intro-
duced a learning-based method for detecting the spec-
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tral envelope of mitral valve (MV) inflow. The method
starts by training a series of detectors to detect a left root
point (E velocity), right root point (A velocity), a single
triangle box (E and A velocities overlapped), and a
double triangle box (E and A velocities separated). Each
of these detectors, which are trained using negative
and positive examples, provided label and detection
probability. After identifying the region of interest using
these detectors, the triangle shape was inferred using a
shape inference algorithm [96]. Given training images
and their corresponding shapes, this algorithm learns
a non-parametric regression function that gives a map-
ping from an image to its shape. Once the shape profiles
are generated, the best shape among all candidates is
selected as the final spectral envelope shape. Finally,
four flow measurements [96] are computed from the
detected envelopes. This method is evaluated using 298
Doppler images and compared with manually traced
envelopes. The experimental results presented in [96]
proved the superiority of the proposed method as com-
pared to a previous method [97]. Known limitations of
machine learning-based methods are: 1) the need of a
large number of manually labeled images and 2) the
subjectivity and difficulty of extracting the best set of
features.

In summary, we present above several automated
methods for spectral envelope segmentation. Existing
methods for Doppler segmentation have different limi-
tations that need to be addressed to obtain robust and
practical automated clinical applications. For example,
current methods are sensitive to the image noise, vari-
ations, and are designed for specific Doppler profile.
Future research, therefore, should focus on developing
segmentation methods that are robust to noise, different
variations, and blood flows. Another future direction
would be to automate Doppler gate localization to
speed up the acquisition process, increase the quality
of the recorded Doppler, and enhance the segmentation
performance. Finally, an interesting direction for future
research would be to investigate the use of recent deep
learning methods for spectral envelope segmentation.

In addition to the aforementioned methods, we refer
the reader to automated non-image methods applied
directly to the raw signal for maximum velocity esti-
mation [98], [99], [100], [101]. These methods are highly
affected by the signal-to-noise levels and the transducer
configurations. Further, they can only be applied to the
original Doppler signal during the acquisition.

4.4.3 M-mode, Wall Segmentation
M-mode echo is used to provide an accurate assessment
of small cardiac structures with rapid motions (e.g.,
valves). Assessing cardiac function from M-mode re-
quires to accurately delineate wall boundaries followed
by estimating different indices (e.g., left ventricular
dimension at end-systole). This process is challenging
due to the presence of image artifacts and false echoes

between the cardiac walls. Contrary to B-mode and
Doppler images, only few methods are proposed to
delineate wall boundaries in M-mode images.

For example, Fancourt et al. [102] proposed a fully
automated method for delineating anterior and poste-
rior walls in M-mode images. The method starts by
splitting an M-mode image into anterior wall and poste-
rior wall regions. For each region, the relative distance
offsets between all pairs of scans are calculated using
cross-correlation [102]. These offsets are converted to
relative wall motion using global optimization followed
by calculating the absolute wall motion from the rela-
tive wall motion using interpolation (interpolating over
M-mode images). The proposed method is designed
and evaluated using a small and invariant dataset. In
summary, very few automated methods are proposed
to segment cardiac walls in M-mode images. Therefore,
an important future direction would be to develop au-
tomated M-mode analysis methods using large datasets
collected by different vendor/software from different
populations.

4.5 Cardiac Disease Classification

The majority of automated echo methods for CVD clas-
sification focus on 1) detecting diseases that cause Wall
Motion Abnormalities (WMA) based on analysis of B-
mode or 2) evaluating cardiac dysfunction from Spectral
Doppler. We are not aware of any automated method
that uses M-mode for CVD classification.

4.5.1 CVD Classification from B-mode Echo
B-mode echo is commonly used for detecting and as-
sessing wall motion abnormalities (WMA). These ab-
normalities are observed in several cardiac diseases
such as cardiomyopathy and coronary artery disease
(CAD) [2]. Four terms are usually used in echocar-
diography to describe different types of WMA: Hy-
pokinetic (reduced movement), akinetic (lack of move-
ment), dyskinetic (abnormal movement), and aneurysm
(abnormal wideness) [2]. Cardiomyopathy is a disease
of the heart muscle that can cause abnormal dilation,
thickening or lack of function of focal segments of the
heart. Dilated cardiomyopathy (DCM), hypertrophic
cardiomyopathy (HCM), and ischemic cardiomyopathy
(IC) are three major cardiomyopathy diseases. DCM
is a cardiac muscle disease that enlarges LV wall and
causes abnormal global motion. HCM is another muscle
disease that causes thickening of the cardiac muscle
(myocardium), which can lead to stiffness of LV as well
as global and regional motion abnormalities. Ischemic
cardiomyopathy (IC) causes weakness of the cardiac
muscles [2]. CAD (coronary artery disease) occurs when
the coronary arteries become narrowed or blocked. MI
(myocardial infarction) is a serious cardiac disease that
occurs as a result of severely narrowed or blocked
coronary artery. Coronary artery disease can be detected
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by the presence of regional WMA on echocardiogram
[2].

Several machine learning-based methods published
in the literature can detect WMA, CAD, and cardiomy-
opathy diseases based on automatically extracted B-
mode indices (e.g., LV volume) or disease-relevant fea-
tures extracted directly from the images.

For example, Leung and Bosch [103] proposed an au-
tomated method to assess WMA. The proposed method
is developed and evaluated using B-mode data (A2C
and A4C) collected from 129 random patients; data of 65
patients are used for training and data of 64 patients are
used for testing. The ground truth (LV endocardial con-
tours) is provided using a semi-automated technique
and further validated by two cardiologists. Scores of
abnormalities are also provided by the cardiologists as
follows: 0 = normokinesia, 1 = hypokinesia, 2 = akinesia,
and 3 = dyskinesia. These scores are grouped to create
two classes: normal motion (score of 0) and abnormal
motion (score > 0). The annotated contours are used to
construct LV shape model, which is further analyzed us-
ing PCA to extract statistical parameters for abnormal-
ity classification. Different combination of PCA shape
modes and parameters are used to train the classifier. In
all cases, higher correct classification rate is achieved us-
ing less shape parameters. The trained binary classifier
achieved up to 91.1% average accuracy in classifying
wall motions as normal or abnormal. Similarly, Qazi et
al. [104] used a shape-based method to automatically
delineate the boundary of LV in each frame. Then, sev-
eral cardiac structural and functional features, namely
circumferential and radial strains, as well as local,
segmental, and global Simpson volumes, are extracted
from the delineated LV shape. The extracted numerical
features are then reduced (Kolmogorov-Smirnov test) to
select the best features for training the classifier. The
trained classifier, tested using 220 cases, achieved a
sensitivity that ranges from 80% to 90% in classifying
cases as normal or abnormal (hypokinetic, akinetic,
dyskinetic, and aneurysm).

Shalbaf et al. [105] proposed quantitative regional
index for WMA detection and CAD predication. The
proposed method is evaluated using 345 cases (B-mode,
A2C and A4C) collected from 10 healthy volunteers and
14 patients with CAD. The ground truth labels, which
include LV region, landmarks, and scores of abnormal-
ities, are annotated by a group of trained cardiologists.
The proposed method combines affine transformation
and B-spline snake to delineate LV and calculate a novel
index for WMA classification. Specifically, the proposed
index is computed from the control points of B-spline
snake model. For classification, two threshold values,
determined using the quantitative regional indices of
all images in the training set, are used. The determined
thresholds are used to classify the testing set (125 cases)
as normal or abnormal (hypokinetic, akinetic, dyski-
netic, aneurysm). The agreement between the scoring

of abnormalities obtained by the proposed index and
those assigned by two experts achieved 83% absolute
agreement and 99% relative agreement.

For CAD risk assessment, Araki et al. [106] intro-
duces a method for classifying patients as high or
low risk. The method starts by extracting 56 types of
grayscale features that represent the coronary texture
directly from the image. Examples of these features
include gray level co-occurrence matrix (GLCM), gray
level run length matrix (GLRLM), intensity histogram,
gray level difference statistics (GLDS), neighborhood
gray tone difference matrix (NGTDM), invariant mo-
ment, and statistical feature matrix (SFM). Then, six
combinations of features are generated, and the best
combination is chosen based on classification accuracy.
The best set is used to train Support vector machine
(SVM) for CAD risk assessment. The method is eval-
uated using 2865 B-mode frames collected from 15
patients. These frames are labeled, using stroke-risk bio-
marker (cIMT > 0.9mm), as high-risk (1508) and low-
risk (1357). To select the best kernel of SVM and the
best set of feature combination, K-fold cross validation
protocol with 10 trials is used. The proposed method
achieved up to 94.95% average accuracy and 0.95 AUC
in classifying patients as low-risk and high-risk. Other
machine learning methods for CAD detection and risk
assessment can be found [107] (first-order statistical
features, ANOVA for reduction, and NN classifier) ,
[108] (trace transform and fuzzy texture), [109] (discrete
wavelet transform and marginal fisher analysis), and
[110] (GLCM and SVM).

Sudarshan et al. [111] presented a machine learn-
ing framework for myocardial infarction (MI) detection
and assessment. For feature extraction, Local Configu-
ration Pattern (LCP) descriptor is used to extract 17850
LCP features from 46200 Curvelet Transform (CT) co-
efficients of echo. Prior to classification, the extracted
features are reduced using Marginal Fisher Analy-
sis (MFA) followed by fuzzy entropy based ranking
method (mRMR) to select the best set of features. The
proposed framework achieved an accuracy of 98.99%,
sensitivity of 98.48%, and specificity of 100% using
Support Vector Machine (SVM) classifier with only six
features. In addition to handcrafted features, a novel
index, called Myocardial Infarction Risk Index (MIRI), is
proposed to detect three types of MI: normal, moderate,
and severe. MIRI is generated by combining the most
distinguishing features of MFA, and it is formulated
as follows: MIRI = (0.15 × MFA 8) + (0.3 × MFA 1)
+ 2.5. The mean values of MIRI for normal, moderate
and severely MI are 6.6, 7.4, and 5.9, respectively. Using
the proposed index for the identification of MI stages
achieved excellent performance comparable to the per-
formance of classification using handcrafted (LCP) fea-
tures. We refer the reader to other automated method
for MI detection and assessment [112] (DWT, GLCM,
and higher-order moment spectra [HOS] features and
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SVM) and [113] (HOS, Fractal Dimension (FD), Hu
moments, Gabor features and SVM).

Automated methods for detecting and diagnosing
dilated cardiomyopathy (DCM) and hypertrophic car-
diomyopathy (HCM) are proposed in [114] and [115].
In [114], the automated method starts by denoising each
frame followed by segmenting LV in that frame using
Fuzzy c-means (FCM). The segmented LV is used to
extract cardiac parameters such as volume and ejection
fraction (EF). In addition to these parameters, principal
component analysis (PCA) and discrete cosine trans-
form (DCT) algorithms are applied to the segmented
LV to extract shape and statistical features for DCM and
HCM diagnosis. The extracted PCA and DCT features
are used with NN, SVM and combined K-NN to detect
normal hearts, hearts affected with DCM, and hearts af-
fected with HCM. The experimental results showed that
the highest performance (92.04%) in classifying normal
and affected heart is obtained using PCA features with
NN classifier. It also showed that PCA features are bet-
ter than DCT and cardiac indices (e.g., ejection fraction)
for DCM and HCM diagnosis because moderately and
mildly abnormal cases can have normal indices values.

Narula et al. [115] used an ensemble of three ma-
chine learning classifiers, namely SVM, random forests
(RF), and neural networks (NN), to automatically differ-
entiate between hypertrophic cardiomyopathy (HCM)
and physiological hypertrophy in athletes (ATH). The
proposed ensemble approach is developed and evalu-
ated using data obtained from 77 ATH and 62 HCM
patients. Several geometric (e.g., LV diameter) and me-
chanical (e.g., strain) indices are extracted from the
delineated chamber using a commercial software, and
further reduced using information gain (IG) algorithm.
The output of IG algorithm revealed that volume (IG
= 0.24), mid-left ventricular segmental (IG = 0.134),
and average longitudinal strain (IG = 0.131) are the
best features or predictors for differentiating between
HCM and ATH. The model, which was evaluated using
10-fold cross validation, achieved 87% sensitivity and
82% specificity in distinguishing HCM from ATH. It
achieved 96% sensitivity when adjusted for age. The pa-
per concluded the capability of machine-learning algo-
rithms to accurately discriminate between physiological
and pathological patterns of hypertrophic remodeling.

4.5.2 CVD Classification from Doppler Echo
Doppler outperforms other imaging modalities in as-
sessing valve regurgitation and stenosis [116]. The accu-
rate detection of valve dysfunction relies heavily on the
Doppler indices extracted from the spectral envelopes
(Section 4.4.2).

Kiruthika et al. [83] proposed an automated method
for assessing the severity of aortic valve regurgitation.
To delineate the spectral envelopes and extract three
Doppler indices, several low level image processing-
based techniques, namely filtering, morphological oper-

ations, thresholding, and edge detection, are used. Once
the spectral envelope is delineated, 3 Doppler indices
are extracted: peak pressure gradient (PPG), peak flow
velocity (PFV), and pressure half time (PHT). These
indices showed strong correlation with manual indices
when applied to 22 images of 11 patients with mild,
moderate, and severe aortic regurgitation; i.e., assess-
ment of aortic regurgitation severity showed a strong
positive correlation (r=0.95).

Another method for quantifying the severity of
valve dysfunctions is presented in [63]. Deformable-
based method (active contour) is used to delineate the
spectral envelope of the left ventricular outflow tract
(LOVT) and transvalvular flow (TF) in 30 patients with
aortic or mitral stenosis, 20 with normal sinus rhythm
and 10 with atrial fibrillation. The delineated envelopes
are then used to extract three important Doppler in-
dices: the maximum velocity (Vmax), the mean velocity
(Vmean), and the velocity time integral (V TI). Compar-
ison between the automatically extracted indices and
manual indices extracted by two experienced echocar-
diographers showed good agreement. In addition, the
results of B&A analysis on Vmax, Vmean, and V TI
for all patients showed acceptable limits of agreement
and small bias; -3.9% to +0.5% (Vmax), -4.6% to -1.4%
(Vmean), and -3.6% to +4.4% (V TI).

Kalinic et al. [94] presented a method for detect-
ing aortic stenosis (AS) and coronary artery disease
(CAD) using Doppler indices extracted from spectral
envelopes. The segmentation of the spectral envelope is
performed by registering the input image to an atlas.
The registration step consists of geometric transforma-
tion, similarity measure, and optimization. The atlas,
which is used as a template for segmentation, is con-
structed from spectral envelopes of healthy volunteers
(59 envelopes). The proposed method is validated using
36 profiles belong to patients with CAD, 53 profiles
belong to patients with AS, and 59 profiles belong to
healthy volunteers. Once the envelope is segmented,
three Doppler indices are extracted and used for dis-
ease detection. These indices are time-to-peak, peak
value, and rise–fall time ratio. The experimental re-
sults showed strong statistical correlation between the
parameters extracted automatically and those extracted
manually by the expert cardiologist.

Similar to [94], disease-specific atlases are con-
structed using a proposed hybrid framework [95].
Specifically, two atlases are created from the aortic
Doppler images of 100 healthy individuals and 100
patients with AS and used as template for segmentation.
After segmenting the envelope, four diagnostic values,
namely area, jet velocity, mean and peak gradient, are
extracted and combined with physiological parame-
ters (e.g., heart rate) to detect 3 levels of AS: mild,
moderate, and severe. The experimental results showed
comparable segmentation and assessment performance
between the automated and manual methods (see [95]
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for results).

Table 5 provides a summary of automated methods
for CVD classification from B-mode and Doppler echo.
We refer the reader to [106], [117] for comprehensive
discussions of CAD, MI, and HCM diseases. Further,
comprehensive discussions of Doppler disease-specific
features and the importance of automated diagnosis of
valve regurgitation and stenosis can be found in [118],
[119]. In summary, automated CVD classification has
attracted researchers and clinicians in the past decades.
Most existing works, however, focus on detecting LV
dysfunction or diagnosing its abnormality. Future re-
search should focus on analyzing other chambers (e.g.,
RV and LA) as well as all chambers together (whole
heart). Existing works also focus on analyzing normal
or slightly abnormal cardiac structures, and predicting
common cardiac diseases (e.g., DCM). Therefore, future
research should focus on analyzing abnormal structures
and rare diseases. One obvious limitation of this di-
rection is the lack of datasets acquired from patients
with abnormal structures and rare diseases. Finally,
future works should focus on developing automated
CVD classification for fetuses and neonates because
less attention has been paid to these populations as
compared to adults.

5 ECHOCARDIOGRAPHY DATASETS

As the performance of automated echo analysis system
depends highly on the data, there is a critical need for
collecting well-annotated, diverse, and relatively large
echo datasets. Several datasets are publicly available
for cardiac CT and MRI modalities. Examples of these
datasets include MESA [120], Cardiac MRI [121], SCD
[122], DETERMINE [123], SCMR [124], and CHD [125]
for CMR modality, and Left atrial CT dataset [126] for
CT modality. In case of echocardiography, we are not
aware of any Doppler or M-mode datasets that are
publicly available for research use. We are aware of only
three B-mode echo datasets made available publicly for
researchers. These datasets are EchoNet-Dynamic [127],
CETUS [128], and STACOM [129]. The characteristics of
these datasets are presented in Table 6.

5.1 EchoNet-Dynamic Dataset

EchoNet-Dynamic dataset [127] contains 10,025 echo
videos (2D B-mode, A4C) collected from 10,025 patients
admitted to Stanford University Hospital between 2006
and 2018. Patients average age is 68 ± 21 and 49% of
them are female. The number of patients in training,
validation, and testing sets are 7460, 1288, and 1277,
respectively. Videos of the dataset are recorded from
different angles, locations, and image acquisition tech-
niques (e.g., iE33, Sonos, Acuson SC2000, Epiq 5G). Each
video is de-identified and cropped to get the anatomical
region. The cropped region (600x× 600 or 768× 768) is

then downsampled, using cubic interpolation, into stan-
dardized 112×112 pixels. In each video, LV boundary is
traced at end-systole (ES) and end-diastole (ED) frames
by a human expert. In addition to the videos, the dataset
contains demographic information and cardiac indices
obtained by a registered sonographer and verified by
an echocardiographer. These indices are ejection frac-
tion (EF), end-systolic volume (ESV), and end-diastolic
volume (EDV). To the best of our knowledge, EchoNet-
Dynamic is the largest labeled echo dataset made avail-
able publicly (via Github) to the research community.

5.2 CETUS Dataset
CETUS [128] is another open access 3D-US (B-mode,
A4C) dataset for the automatic delineation of LV bor-
ders at ED and ES frames. It was released in conjunction
with the Challenge on ”Endocardial Three-dimensional
Ultrasound Segmentation” during MICCAI 2014. The
dataset has 3D-US images collected from 45 subjects,
divided into three groups: 1) 15 healthy subjects, 2) 15
patients with a history of myocardial infarction (MI),
and 3) 15 patients with a history of dilated cardiomy-
opathy (DCM). The data are acquired at three differ-
ent hospitals: Rennes University Hospital-France, Uni-
versity Hospital Leuven-Belgium, and Erasmus MC-
Netherlands. In addition, the data acquisition is per-
formed using three different machines: a GE Vivid E9,
using 4V probe, a Philips iE33, using either X3-1 or a X5-
1 probe, and a Siemens SC2000, using 4Z1c probe. Using
these machines, each hospital collected data for 5 sub-
jects from each group. This data collection setup ensures
that the group, hospital, and ultrasound machines are
equally distributed. Images are excluded from further
analysis if they violate a set of pre-determined criteria
(see Table 6). The dataset ground truth segmentations
are obtained by 3 expert cardiologists using a non-
commercial contouring package (Speqle3D) at ED and
ES frames. The data and their corresponding ground
truth segmentation are divided into a training set (15
subjects) and a testing set (30 subjects).

5.3 STACOM Dataset
STACOM [129] is an open access benchmark that was
prepared for a challenge called ”Cardiac Motion Anal-
ysis Challenge” at MICCAI 2012. The benchmark in-
cludes data of two modalities (MRI and 3D-US) and
16 anatomies, each has 13 to 30 frames. The data of
15 healthy volunteers (aged 28 ± 5 years, 19% female)
without a clinical history of cardiac disease and one dy-
namic phantom are recruited at the Division of Imaging
Sciences and Biomedical Engineering (King’s College
London, UK) and the Department of Internal Medicine
(University of Ulm, Germany), respectively. The ultra-
sound data are acquired using iE33 3D echocardiogra-
phy system with a 3D × 301 matrix array transducer
in full-volume acquisition (FVA) mode. All the data
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are acquired from the left ventricle (LV) in apical view
during breath-hold to minimize artifacts. A total of 12
landmarks (4 walls at 3 ventricular levels) was manually
tracked by two observers over the whole cardiac cycle
using an in-house application. These points were regis-
tered to 3D coordinates using a point based similarity
transform. The median of inter-observer variability for
phantom and volunteer datasets are 0.77 mm and 0.84
mm, respectively.

The benchmarks (data and ground truth) for CE-
TUS and STACOM datasets are publicly available for
research use via Cardiac Atlas Project.

6 CURRENT LIMITATIONS AND FUTURE DIREC-
TIONS

Despite the high imaging quality of CMR and CT,
echo remains the most popular and commonly used
modality for diagnosing CVD. This is mainly attributed
to the portability, availability, less complexity, and lower
cost of echo as compared to other modalities. These
attributes make it possible, especially in low-resource
settings, to take full advantage of echo and use it for
diagnosis. However, the interpretation of the acquired
echo data requires echocardiographic expertise which is
lacking in low-resource settings. In addition, the manual
interpretation is error-prone and suffers from intra-
/inter-reader variability. In such cases, fully automated
screening and diagnostic systems have a significant
potential in mitigating subjectivity and providing high-
quality and cost-efficient healthcare, especially for pa-
tients in low-resource settings.

In this paper, we reviewed existing automated meth-
ods for performing different echo tasks. These methods
achieved good to excellent performance and proved
the feasibility of using fully automated systems for
acquisition, interpretation, and diagnosis. Therefore,
the question arises of whether or not automated echo
screening and diagnosis systems are ready to be incor-
porated into the clinical practice. Our extensive review
revealed that several issues and limitations need to be
addressed prior to using fully automated systems in
clinical practice, point-of-care ultrasound (POCUS), and
low-resource settings.

Performance of automated systems: how much accuracy
is acceptable or enough? Current methods proved the
feasibility of using automated echo interpretation and
diagnosis. However, it is not clear if the accuracy of
these methods is acceptable for diagnosis in clinical
practice; i.e., the impact of the obtained accuracy on
clinical outcomes is not clear and requires further in-
vestigation. Thus, it is important for future research to
focus attention on not only the technical development
but also on measuring the quality of automated meth-
ods (e.g., [130]) and the actual impact of these methods
on clinical outcomes.

Similar acquisition configurations and unrepresentative
datasets. Most existing methods are designed using
datasets collected by specific devices under specific con-
figurations; i.e., they are sensitive to the acquisition’s de-
vices and configurations. Therefore, we believe another
important future direction would be to provide a sys-
tematic comparison of existing devices/configurations
for echo acquisition and study their impact on perfor-
mance. In addition, we believe future methods should
focus on using datasets collected by various devices un-
der different configurations to enhance generalizability.
Another major limitation of the most current studies is
that they are built and evaluated using relatively small
and invariant datasets. This can lead to significant vari-
ations in performance across different datasets. Hence,
future research should also focus on using relatively
large and variant datasets for developing robust sys-
tems. The use of large and representative datasets is
especially important when developing deep learning-
based methods.

Limited automated echo acquisition methods. The major-
ity of automated methods are applied to echo images
after acquisition to perform view classification, quality
assessment, region segmentation, indices calculation, or
CVD diagnosis. To speed up the acquisition process,
future research should focus on automating echo screen-
ing and acquisition tasks. For example, locating the op-
timal imaging plane and sample volume (gate) requires
time and expertise. Therefore, developing automated
gate localization methods can decrease the acquisition
complexity, reduce the time of manual gate adjustments,
and increase reproducibility.

Limited methods for M-mode and Color Doppler. Among
all echo modes, B-mode, especially the apical, short, and
long axis views, received the most attention followed
by spectral Doppler. Only few automated methods
are proposed to analyze M-mode, color Doppler, and
rare B-mode views. M-mode images is commonly used
to diagnose several cardiac diseases in fetuses. Color
Doppler is well-suited for assessing valves regurgitation
and stenosis as well as detecting septal defects and
intracardiac shunts. Future research, therefore, should
focus on developing robust systems that can interpret
all views and modes, including M-mode and color
Doppler.

LV chamber analysis is the primary focus of most existing
automated methods. As LV chamber plays a critical role
in blood circulation and the diagnosis of several CVD,
existing methods focus mainly on segmenting and an-
alyzing this chamber. RV, LA, and RA chambers have
received less attention due to their complex shape and
unclear boundaries. Because cardiac indices extracted
from RA, LA, and RV chambers are also important for
diagnosing various CVD, future works should develop
fully automated methods that can handle the complex
structures of these chambers. Future research should
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also focus on segmenting the heart as a whole to enable
global assessment that considers the combined motion
of all chambers together.

Population-specific methods evaluated using normal and
homogeneous cases. Existing automated methods paid
less attention to fetuses/neonates/children, and focus
mainly on adults. Because cardiovascular systems of
adults and fetal exhibit significant differences [131],
these methods would perform poorly or might com-
pletely fail when applied to fetuses/neonates/children.
In addition, automated methods that are developed
and evaluated using normal datasets might not work
on cases that have abnormal or greater than mild
pathological deformities. To address these issues, future
works should focus on 1) developing cross-population
methods or 2) population-specific methods for fetal,
neonatal, and adult. Future works should also focus on
developing algorithms robust to image inhomogeneity,
pathological deformities, and shape irregularities, to
assist in analyzing and predicting rare CVD.

Learning multiple echocardiography tasks in isolation.
Automated echo image analysis typically includes sev-
eral tasks such as noise reduction, detection, segmen-
tation, and classification. These tasks are often imple-
mented through separate machine learning methods.
This approach of analysis involves unnecessary repe-
titions and limits the actual impact of machine learning.
Therefore, it is important to use advanced machine
learning methods, such as multitask learning, to simul-
taneously learn several related echo tasks at once. This
approach would improve generalization and decreases
resource utilization while preventing unnecessary repe-
titions of building task-specific models in isolation.

Lack of interpretable and explainable automated echo
methods. Current automated echo methods generate an
output, based on features extracted from the images,
without providing feature importance weights or an
explanation for the detected output. The lack of ex-
plainability and transparency can lead to unreliable
decision making (black-box decisions). Hence, future
work should focus on integrating explainability into
automated systems using approaches that range from
Global variable importance measures to ICNN (inter-
pretable convolutional neural networks) [132] or model-
agnostic explanations [133].

Lack of automated scientific discoveries in cardiology.
current methods are designed, using labeled training
data, to compute established parameters (e.g., LV vol-
ume). These parameters are then fed into machine learn-
ing classifiers to detect known patterns. Supervised
learning approach relies on expert’s knowledge, and
therefore, cannot extract knowledge unknown to the
experts. To automate scientific discoveries in cardiology,
it is important to explore unsupervised and reinforce-
ment learning approaches. These approaches can detect
new patterns, extract knowledge unknown to experts,

explore different actions, and learn which actions lead
to a better diagnosis.

Current echo systems are partially automated. Current
automated systems require experts to manually localize
Doppler gate, detect ROIs, or select ED/ES frames prior
to performing a specific cardiac image analysis task
(e.g., segmentation). Future research, therefore, should
focus on developing fully automated (end-to-end) sys-
tems that could be used efficiently in real-time to ac-
quire data, analyze desired views and frames, segment
cardiac region, and diagnose diseases without, or with
minimum, user intervention. Such fully automated sys-
tems have the potential of reducing clinical workflow as
well as improving patient outcomes. These systems can
be used in POCUS and low-resource settings to provide
high-quality and cost-efficient healthcare.

Automated real-time echo analysis. Several challenges
need to be addressed before adopting automated real-
time echo analysis and integrating it into clinical and
low-resource settings. For example, existing methods
focus mainly on improving performance. Little consid-
eration has been given to issues such as speed, compu-
tation time, memory usage, model size, power/energy
consumption, and scalability. Future works, therefore,
should consider these issues and design lightweight
systems that can achieve maximum performance in
latency-sensitive applications and resource-limited en-
vironments.

Dataset and code availability. Open-access code and
publicly available datasets can speed up and strengthen
advances in automated echo analysis because it facil-
itates reproducibility of results and allows to extend
existing methods. Hence, it is very valuable for future
works to provide the data and code necessary for repli-
cation and improvement. So far, we are aware of only
few echo datasets and codes [46], [127] that are publicly
available for research use. We described these publicly
available echo datasets in Section 5.

7 CONCLUSION

Automated echo analysis is critical to improve the lim-
itations of current practice and provide high-quality
healthcare to the patients in low-resource settings. The
first step of any automated system involves accurately
detecting ROI as it highly impacts the performance
of subsequent automated tasks (e.g., segmentation).
In this paper, we reviewed automated ROI detection
methods as well as automated methods of four cardiac
tasks: echo quality assessment, mode/view classifica-
tion, boundary segmentation, and CVD diagnosis. We
also provided a summary of publicly available echo
datasets followed by a thorough discussion of current
limitations and potential future directions. This paper
provides biomedical engineers and clinicians a stand-
alone summary of automated echocardiography analy-
sis and interpretation.
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APPENDIX A
ECHOCARDIOGRAPHY MODES

A.1 M-mode

M-mode provides a one dimensional view or trace of
the motion for a specific cardiac structure (e.g., mitral
valve). It helps visualizing the temporal changes in the
depth of echo-producing interfaces. The X axis (top or
bottom) of M-mode shows time and the Y axis (sides)
shows distance. This type of echo imaging has a high
temporal resolution and is useful for measuring rapid
motions (e.g., opening and closing of valves). Figure
2 presents an example of an image acquired using M-
mode echo.

Fig. 2. M-mode echocardiography recorded from the first author.
IVS: Inter-ventricular Septum; PW: Posterior Wall; IDs: Internal
Diameter (systole); IDd: Internal Diameter (diastole); green curve
is ECG signal.

A.2 B-mode

This mode provides a cross-sectional image of the
heart’s tissues and boundaries. Each point in B-mode
represents an echo and the brightness (B-mode) of each
point represents the strength of the reflected echo. A
comprehensive B-mode acquisition involves imaging
the heart from different windows or views by posi-
tioning the transducer in different locations [2]. The
most common B-mode views include [2]: parasternal
long axis and short axis (PLAX and PSAX), apical
two-chamber (A2C), apical three-chamber (A3C), apical
four-chamber (A4C), apical five-chamber (A5C), Sub-
Costal Long and Short Axis View (SCLX and SCSX),
and Suprasternal Notch View (SSN). Figure 3 presents
an example of B-mode A4C view.

A.3 Doppler mode

Doppler measures the velocity and direction of blood
cells within the heart. There are two main types of
Doppler imaging: Color Doppler and Spectral Doppler.
Color Doppler visualizes blood flow direction and ve-
locity using a color scale, where red hues represent
flow toward and blue hues represent flow away from
the transducer. As shown in Figure 4, color Doppler is
usually superimposed on B-mode grey-scale image.

Fig. 3. B-mode A4C view echocardiography.

Fig. 4. Spectral Doppler mode echocardiography (mitral valve [MV]
flow). The upper part of the image shows the color Doppler. Image
is taken from Open-i.

Spectral Doppler (Figure 4) uses the frequency shift in
reflected waves to visualize the blood flow as a graph
that shows the velocity of blood flow (Y axis) over
time (X axis). A velocity value displayed above the
baseline indicates flow towards the transducer and a
value displayed below the baseline indicates flow away.
The baseline is a horizontal line that has zero velocity.
This type of echocardiography is routinely performed
using either continuous or pulsed wave Doppler [2].
Pulsed Wave Doppler or PW Doppler utilizes a single
transducer element to send and receive an ultrasound
wave. By sending and receiving pulses, PW Doppler has
the ability to measure the velocity of blood flow at a spe-
cific cardiac region (a.k.a., sample volume). This makes
PW Doppler a very powerful method for providing site-
specific information. However, a major limitation of PW
Doppler is its inability to display high velocities due
to aliasing phenomena [2]. Continuous Wave Doppler or
CW Doppler, on the other hand, accurately measures
high blood velocities. It has two dedicated transducer
elements for continuously sending and receiving ultra-
sound waves. This type of Doppler is not site-specific
and is frequently used to measure high blood velocities
of cardiac pathologies [2].
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TABLE 2
Quantitative comparison of automated methods for echo quality assessment. A2C (apical 2 view), A3C (apical 3 view), A4C (apical 4 view), PLAXA

(parasternal long axis view, aortic valve), PLAXPM (parasternal long axis view, papillary muscle), GHT (Generalized Hough Transform), CNN
(Convolutional neural network), TPR (true positive rate), CC (correlation coefficient).

Work ROI Method Mode & View Method System & Data Train & Test Ground Truth Performance
[27] NA B-mode: Model-based: GE Vivid E9 Train: 4 patients Scores by 2 TPR (Section 3.1):

A4C B-splines to model system 35 cases cardiologists: Good quality: 22%
four chambers; 95 videos Test: 2 patients Good, fair, and Fair quality: 20%
goodness-of-fit 60 cases poor Poor quality: 15%

[28] NA B-mode: Model-based: GE Vivid 7 Train: 89 Scores by CC (Section 3):
PLAX GHT applied to input system images to create expert 0.84 correlation

image compared with 133 images PLAX Atlas sonographer: between manual
Atlas: created 35 patients Test: 44 Good (score 3) and automated
from images Poor (score 0) scores
segmented manually

[29] NA B-mode: Deep Learning: NA system; Train: 80% Scores by Mean Absolute
A4C Customized 2,904 2,345 images; expert Error (MAE):

regression CNN A4C images Test: 20% cardiologist: 0.87± 0.72
560 images; Good and Poor

[30] NA B-mode: Deep Learning: Different GE Train: 80% Scores by View accuracy:
AP2, AP3, Customized and Philips # videos per physicians: (1− ΣT

1 |A−M |)
AP4, regression CNN systems; view = 935 A2C (0-8), T: cases per view
PLAXA, 2,450 cines: Total (4,675); A3C (0-7), A-M: auto-hand,
PLAXPM A2C (478), Test: 20% A4C (0-10), A2C (86±9),

A3C (455), # videos per PLAXA(0− 4), A3C (89±9),
A4C (575), view = 228 PLAXPM A4C (83±14),
PLAXA(480), Total (1,144); (0-5), scores PLAXA(84±12),
PLAXP (462) 20 frames videos normalized PLAXP (83±13)
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TABLE 3
Quantitative comparison of automated methods for mode/view classification. A2C-A3C-A4C-A5C (apical 2-3-4-5 views), PLAX (parasternal long axis

view), PSAX (parasternal short axis view), PSA (Parasternal Short Axis), PSAM-PASAP (PSA of Mitral and Papillary), IVC (inferior vena cava),
SC2C-SC4C-SCLX (subcostal 2-4 chamber and long axis), GSAT (Gray- Level Symmetric Axis Transform), SVM (support vector machines), TPR (True

Positive Rate).

Work ROI Method Mode & View Method System & Data Train & Test Ground Truth Performance
[32] NA B-mode: Conv. ML method Philips CX50; Train: 2700, Domain TPR (Section 3.1):

A2C, A4C, GIST descriptor, 33Hz; Test: 2700 expert annotation A2C-A4C (100),
PALX, PSAX, probabilistic SVM 270 videos, frames for all views SAX (100), LAX (98),
SC2C, SC4C, 5-10 heartbeats SC2 (96), SC4 (100),
SCLX, other SCL (64), other (96)

[35] LV B-mode: Conv. ML method System: NA; Train: 1080; Manually TPR (Section 3.1):
Detectors A2C, A4C, Fusion of LV 1303 videos, Test: localized LV A2C (93.5),
(MLBoost) PALX, PSAX detectors; multi- A2C (371), A2C (61), regions A4C (97.9),
in all viwes class boosting A4C (574), A4C (96), PSAX (96.4),

PSAX (203), PSAX (28), PLAX (97.4)
PLAX (155) PLAX (38)

[36] GSAT B-mode: Conv. ML method System: NA; Train: 2657, Domain Average precision
Detector A4C, Relational Structures, 15 normal vid., leave-one-out; expert annotation (Section 3.1):

PALX, PSAX Markov Random 2657 i-frames; Test: 552 for all views 88.35%
Field, multi-class 6 abnormal,
SVM 552 i-frames;

[37] Manual B-mode: Conv. ML method System: NA leave-one-out; Manual labeling TPR (Section 3.1):
A2C, A3C, Optical flow, 113 vid., 25 Hz A2C (51), A3C (54),
A4C, A5C, edge-filtered map, 320× 240 pix. A4C (93), A5C (61),
SAB, SAP, SIFT features, SVM 2470 frames SAB (1.0), SAP (93),
PLA, PSAM PLA (88), PSAM (71)

[46] NA B-mode: Deep learning: System: NA Train: 40,000 Manual labeling TPR (Section 3.1):
A2C, A3C, VGG-based CNN > 4000 studies images; IVC (100),
A4C, PLAX, with 6 classes; Test: VC (159), A2C (94)
PSAX, IVC, ADAM, 64 batch A2C (555), A3C (93),
other 1x105 learning rate, A3C (174), A4C (98),

10-20 epochs; 2 hr A4C (756), PLAX (99),
training (GTX 1080), PLAX (515), PSAX (99.5)
600 ms runtime PSAX (458)

[49] NA B-mode: Deep learning: GE Vivid E9, Train: Manual labeling Overall accuracy:
A2C, A4C, Inception-based 4582 vid., 205 4582 vids., Frame (98.3 ± 0.6)
PLAX, CNN with 7 classes; patients, avg. 256,649 Video (98.9 ± 0.6);
PSAX, Adam, 10−4 rate, age: 64; frames; runtime (4.4 ± 0.3)
ALAX, 64 mini-batch, GE Vivid E7, Test: ms (GPU)
SC4C, 100 epochs 2559 vid., 265 2559 vids.,
SCVC, patients, avg. 229,951
unknown age: 49 frames

[50] NA B-mode: Deep learning: Philips, GE, Patient level Manual labeling Overall accuracy:
12 apical, Lightweights VGG, and Siemens split: by senior 88.1%;
parasternal, DenseNet, and systems; Train (60%), cardiologist fusion of 3
subcostal, ResNet based 3,151 patients, Valid (20%), models
suprasternal models; ADAM, 16,612 cines, Test (20%),
views 1−4 rate, 300 batch 807908 frames

[51] NA B-mode: Deep learning: GE Vivid 7 or E9; Train: 280, Clinicians TPR (Section 3.1):
A2C, A3C, Spatial CNN, input: 432 vid.; age: 7-85; Test: 152; in 2 hospitals A2C:100, A3C:100,
A4C, A5C, raw image; 434× 636, 26fps Re-sized: labeled 8 views A4C:100, A5C:71.4,
PLAX, PSAX, Temporal CNN, input: 341× 415, 26fps 227× 227× PLAX:96, PSAX:95,
PSAM, PSAP acceleration image 26 frames PSAM:88, PSAP:75
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TABLE 4
Quantitative comparison of state-of-the-art segmentation methods. LV (Left Ventricle), A2C-A4C (apical 2-4 view), PLAX (parasternal long axis view),

PSAX (parasternal short axis view), CW (continuous wave), PW (pulse wave), MV (mitral valve), AV (aortic valve), ED (end-diastole), ES (end-systole),
RMSE (root mean square error), SRAD (speckle reduction anisotropic diffusion), PPG (peak pressure gradient), PHT (pressure half time), EPV (E-Wave

Peak Velocity), EDT (E-Wave deceleration time), APV (A-Wave Peak Velocity), and ADU (A-Wave duration).
** indicates the performance is reported by superimposing the automated segmentation on raw images. We refer the reader to the actual papers for

visualization of the results as including these images would require obtaining permission from the publisher.

Work ROI Method Mode & View Method System & Data Ground Truth Performance
[52] Semi- B-mode: Low Level Image Processing ATL HDI 3000; Manual contours CC (Section 3.2): 0.87

automated A4C, LV Pre-processing module 12 volunteers, by a specialist High (0.99±0.01)
(Filtering & morphological operations) 12 vid. 44fps, Average (0.90±0.024)
Segmentation module 900 frames Low (0.73±0.101)
(Watershed and contour correction)

[54] Automated B-mode: Low Level Image Processing System: NA; Manual contours **
(k-means) A4C, all SRAD filtering, thresholding, 20 volunteers, by a specialist

chambers edge detection 25 videos
[60] NA B-mode: Deformable Model: System: NA; Manual contours **

A2C, LV Active contour, coupled optimization 61 volunteers, for 85 images by
function 85 ED images expert echo

[61] NA B-mode: Deformable model: System: NA; Manual contours **
PLAX, PSAX Smoothing, Hough transform, 11 volunteers, for 85 images by
LV active contour 15 ED images echo expert

[62] Manual B-mode: Deformable Model: System: GE ; Manual contours RMSE between
A2C, A4C Control points located manually Vivid 3; and cardiac auto and manual:
LV (initial contour) 50 ES and ED indices by LV area: 1.5,

B-spline snake (final contour) images echo expert LV volume: 6.8,
Ejection fraction: 4.6

[72] Manual B-mode: Statistical Model: System: NA; Manual contours Pixel accuracy
A4C, LV Global despeckling, active appearance synthetic and by cardiologist (Section 3.1):
LV model training, clinical echo Synthetic (84.12%),

images, 56 Clinical (84.39%)
normal fetuses

[76] NA B-mode: Conventional Machine Learning: System: NA; Manual contours **
A4C, all Adaptive Group Dictionary Learning, 40 clinical by cardiologist
chambers Dictionary initialization, sparse group images of 50

representation, pixel classification normal fetuses
[46] NA B-mode: Deep Learning (Pixel Segmentation): System: NA; Manual **

A2C, A4C 4 U-net CNN models trained using Train: 566 segmentation of IOU value
PLAX, PSAX; images and masks (A2C = 198, images and all chambers (Section 3.2):
all chambers A4C = 168, PSAX = 72, PLAX = 128); masks; Test: 55% to 92% for

Augmentation (cropping & blackout); 557 images all views and
Training, 2 hours on Nvidia GTX 1080; chambers
Runtime: 110ms per image on average

[82] Manual Spectral Low Level Image Processing: GE Vivid 5; Manual velocity CC (Section 3.2):
Doppler; Objective thresholding method, 25 CW & PW time integral & velocity-integral (0.94)
long strips morphological operations, biggest-gap normal images peak-velocity by peak-velocity (0.98)

algorithm for peak detection cardiologist
[83] Detection Spectral Low Level Image Processing: System: NA; Manual peak CC (Section 3.2):

based on axes CW Doppler; Noise filtering & contrast adjustment, 22 images; 11 velocity, PPG, Age G1 (20-35): 0.985,
fixed Canny edge detector, envelope normal subjects; and PHF by Age G2 (36-50): 0.922,
locations smoothing, peak detector 3 age groups a cardiologist Age G3 (51-65): 0.833

smoothing, peak detector
[84] Manual Spectral Low Level Image Processing: System: NA; Manual envelope **

CW Doppler Texture filters (entropy, range, and 20 CW images; contours by
standard deviation), thresholding, 25 patients a cardiologist
morphological operations with AR

[63] NA Spectral Deformable Model: Philips devices; Manual velocity CC and B&A
Doppler, Speckle resistant gradient vector flow, 30 patients, 10 time integral, (Section 3.2):
MV & AV Generalized gradient vector flow field with atrial peak velocity, & see [63] for

fibrillation, 20 border contours complete results
normal by 2 experts

[93] NA Spectral Model-based: GE Vivid 7; Manual envelope **
CW Doppler Reference image calculated from all 59 CW images; delineation by

training images (model), mapping or 30 normal echo expert
registration from input to reference volunteers

[96] Automated; Spectral Conventional Machine Learning: System: NA; Manual Doppler CC (Section 3.2):
3 trained Doppler: E peak detector (left root), A velocity 255 training, indices (EPV, EDT, EPV (0.987),
detectors MV detector (right root), peak detector; 43 testing (APV, ADU) by EDT (0.821),

training shape inference model 2 sonographers APV (0.986),
(mapping from image to its shape) EDU (0.481)
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TABLE 5
Summary of automated CVD classification methods for B-mode and Doppler. LV (left ventricle), WMA (wall motion abnormalities), A2C-A3C-A4C (apical

2-3-4 view), CW (continuous wave), CAD (coronary artery disease), DCM (dilated cardiomyopathy), HCM (Hypertrophic cardiomyopathy), ATH
(physiological hypertrophy in athletes), MI (myocardial infarction), AS (aortic stenosis), AR (aortic regurgitation), GLCM (gray level co-occurrence matrix),

GLRLM (gray level run length matrix ), GLDS (gray level difference statistics), SM (statistical feature matrix), LCP (Local Configuration Pattern), PCA
(Principal Component Analysis), LDA (Linear Discriminant Analysis), DCT (Discrete cosine transform), DT (Decision Tree), RF (Random Forest), NN

(neural network), SVM (support vector machine), k-NN (k-nearest neighbors), IG (information gain), KS-test (Kolmogorov-Smirnov test), mRMR
(Max-Relevancy and Min-Redundancy Feature).

Work ROI Objective Data & Labels Method Features & Markers Top Features Performance
[103] NA LV WMA 129 patients, LV modeling using Features: statistical 8 PCA Avg. accuracy

Detection; 65 patients (train), PCA; shape modes parameters extracted parameters; (Correctly
A2C, A4C 64 patients (test); describe variations from shape models; classified
B-mode LV contours and in the population; Biomarkers: cases): 88.9

Abnormalities scores LDA classifier NA
by 2 expert readers

[104] NA LV WMA Data of normal & Hand-initialized Features extracted 6 features Sensitivity
Detection; abnormal (hypokinetic, dual-contours from contour: (global & local) (Section 3.1):
A2C, A3C, akinetic, dyskinetic, (endocardium and circumferential strain, based on 80 to 90
A4C ,aneurysm) patients; epicardium) tracked radial strain, local, KS-test
B-mode 220/125, train/test over time; bayesian global, and segmental

Abnormalities scores networks (binary) volume markers
[105] Manual LV WMA Data of 10 healthy & Affine registration Novel regional index New Agreement

Detection; and 14 patients with and B-spline snake computed from Quantitative between 2
A2C & A4C ischemic; 336 segments: to model LV; control points of Regional experts and
B-mode 55% normal, 13% hypo threshold classifier B-spline snake; Index automated:

-kinetic, 31% akinetic; Biomarkers: Absolute, 83
220/125, train/test; NA Relative, 99
Abnormalities scores

[106] Manual CAD risk Stroke-risk (>0.9mm) 56 grayscale feature Derived 6 Feature Best feature set Avg. accuracy
assessment; to label patients as: extracted: GLCM, Combinations: was chosen (Section 3.1):
B-mode High risk CAD (9), GLRLM, GLDS, SM, FC1, FC2, FC3, based on 94.95;

Low risk CAD (6); invariant moment; F4, F5, F6; classification AUC: 0.95;
1508 frames high risk, SVM classifier; Biomarkers: accuracy
1357 frames low risk; k-fold cross NA (FC6)
ROIs by 2 experts validation

[111] NA MI stage WMSI & LVEF to Curvelet Transform 17,850 LCP mRMR method: Accuracy:
detection; label patients as: and LCP features; features extracted 30 coefficients, 98.99;
A4C normal (40), 200 LDA, SVM, from 46,200 CT 6 features; sensitivity:
B-mode moderate (40), DT, NB, kNN, NN coefficients; proposed 98.48;

severe (40); for classification; Biomarkers: Myocardial specificity:
600 images, 200 10-fold cross NA Infarction Risk 100%
per class; age: 21-75 validation Index (MIRI) (SVM, RBF)

[114] Auto. DCM & Data of 20 normal, LV segmentation by DCT & PCA PCA features TPR:
Fuzzy HCM 30 DCM, and 10 FCM clustering; features; is better than 92.04
c-means detection; HCM patients; shape & statistical Biomarkers: EF, DCT and (normal,
(FCM) LV, PSAX, 60 (4-6 seconds) (PCA & DCT) EDV, ESV, mass, LV biomarkers abnormal)

B-mode videos, 46 fps features; NN, SVM septal thickness (NN)
& combine k-NN
for classification

[115] NA Distinguish 139 male subjects, TomTec software Speckle-tracking Based on info. Sensitivity:
HCM & 77 with ATH, for LV speckle based geometric gain (IG): overall (87),
ATH; 62 with HCM; tracking; (e.g., volume) & Volume (0.24), adjusted
LV, A4C, poor quality ensemble of NN, mechanical MLVS (0.134), for age (96);
B-mode images excluded SVM, RF for (e.g., velocity) ALS (0.13) Specificity:

classification; parameters overall (82),
10 cross validation adjusted

for age (77)
[83] NA AR 9 male & 2 female Envelope delineation: Parameters Pressure half High CC

assessment; subjects with mild, filtering, morpho- computed from time (PHT) between
CW, moderate, severe AR; logical operations, detected envelope: automated
Doppler 22 images; 3 age groups: thresholding, peak velocity, and manual:

G1 (20-35), G2 (36-50), edge detection pressure gradient, r=0.95
G3 (51-65); ground truth pressure half time
by experts

[63] NA Valves 60 patients: Envelope delineation: Doppler indices Mean velocity B & A, LOA
dysfunctions 30 with aortic/mitral Active contour for computed from (MV ) (Section 3.2):
quantification; stenosis; 20 with envelope delineation detected envelope: (-3.9 to +0.5),
CW, Doppler normal sinus rhythm; Peak velocity (PV ), (-4.6 to -1.4),

10 with atrial Mean velocity (MV ), (-3.6 to +4.4)
fibrillation; Velocity time for PV , MV ,
ground truth: manual integral (V TI) and V TI
indices by expert (acceptable)
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TABLE 6
The characteristics of publicly available echocardiography datasets. HF (heart failure), CAD (coronary artery disease), DCM (dilated cardiomyopathy), MI

(myocardial infarction), SD (standard deviation), LV (left ventricle), EF (ejection fraction), ESV (end-systole volume), EDV (end-diastole volume).

Dataset Subjects Location System & Data Exclusion Train/Test Ground Truth Recent Works
EchoNet 10,025 patients; Stanford Acuson SC2000, NA Train: 7465 EF, ESV, EDV [127]
Dynamic 49% female; average University Siemens, Epiq 5G, Valid.: 1288, indices; tracing
[127] age 68 ± 21; Hospital Epiq 7, Philips; Test: 1277 at ES and ED

29% HF patients, (2006 to 2018) 10,025 2D A4C patients frames (LV)
23% CAD patients videos, 30 FPS

CETUS 45 subjects: University GE, Vivid E9, Visually dys- Train: 15, Manual LV [134]
[128] 15 healthy, Hospital France; 4V probe; synchronous Test: 30 contours [135]

15 with MI, University Philips, iE33, LV; patients provided by 3 [136]
15 with DCM Hospital X5-1 probe; unacceptable cardiologists; [137]

Leuven-Belgium, Siemens, SC2000, quality marked ED and
Erasmus; 4Z1c probe; image ES frames
University 3D (A4C) videos, (labeled by
MC-Netherlands 25.7 ± 8.5 cardiologists)

mean ± SD
frames per cycle

STACOM 16 anatomies: Healthy: 13-30 time frames Unacceptable NA 12 points tracked [138]
[129] 15 volunteers, Division of 1158 image quality by 2 observers [139]

1 phantom; Imaging volumes images and registered to
3 female, aged Sciences and 3D coordinates
28 ± 5 year; Biomedical using a point
2 modalities: Engineering, based similarity
Ultrasound King’s College transform;
and MRI London; Quality scores

Phantom: provided by 2
Department of cardiologists
Internal Medicine
Cardiology,
University of Ulm
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