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Stochastic Language Models for Style-Directed
Layout Analysis of Document Images

Tapas Kanungo, Senior Member, IEEE,and Song Mao, Member, IEEE

Abstract—Image segmentation is an important component of
any document image analysis system. While many segmentation al-
gorithms exist in the literature, very few i) allow users to specify the
physical style, and ii) incorporate user-specified style information
into the algorithm’s objective function that is to be minimized. We
describe a segmentation algorithm that models a document’s phys-
ical structure as a hierarchical structure where each node describes
a region of the document using a stochastic regular grammar. The
exact form of the hierarchy and the stochastic language is specified
by the user, while the probabilities associated with the transitions
are estimated from groundtruth data. We demonstrate the segmen-
tation algorithm on images of bilingual dictionaries.

Index Terms—Bilingual dictionaries, duration hidden Markov
models, physical layout analysis, stochastic regular grammar,
style-directed analysis.

I. INTRODUCTION

OUR OBJECTIVE is to develop a generic algorithm
for segmenting scanned images of printed bilingual

dictionaries formatted in various styles, and in various lan-
guage pairs. The need for such an algorithm arose in a project
in which we are developing an end-to-end system that can
rapidly create cross-language information retrieval systems for
low-density languages (languages for which online text is not
readily available). Bilingual dictionaries have translation of
words, which is a crucial resource for building cross-language
retrieval systems. Furthermore, bilingual dictionaries are also
very valuable for creating speech recognition systems for any
new language since dictionaries typically have pronunciations
of words.

While many segmentation algorithms have been proposed in
the past, very few algorithms either i) allow users to specify the
physical style of the input documents or ii) use the user-speci-
fied style information for segmenting document images to op-
timize some criterion. A style-directed segmentation algorithm
could arguably give a better performance on the class of docu-
ments represented by the style than a generic algorithm that is
designed for all types of document styles. In this paper we de-
scribe a probabilistic physical layout model for representing the
physical style of documents. We then use this model to design
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an algorithm for extracting the physical structure of the docu-
ment from a given image.

This paper is organized as follows. In Section II, we provide
a survey of related work. In Section III, we introduce a gener-
ative stochastic document model and describe the probabilistic
physical layout model component in detail. In Section IV, we
give the statement of problem and propose a document phys-
ical layout analysis algorithm based on our proposed model.
A five-step performance evaluation methodology for training
and evaluating physical layout analysis algorithms is presented
in Section V. In Section VI, an experimental protocol is de-
scribed for conducting training and evaluating experiments. In
Section VII, we present our experimental results and provide a
detailed discussion.

II. L ITERATURE SURVEY

There are many generic segmentation algorithms. Wahl
et al. [29] proposed an algorithm that first smears the black
pixels in the and directions and then uses intersection
of the two smeared images to mark out segments. Fletcher
and Kasturi [6] described a system that used rules based
on collinearity, proximity, and connected component shape
distributions to group text into words and phrases. Bairdet al.
[2] based their algorithm on the observation that segmenting
the foreground is a dual of segmenting the background and thus
detected columns of white pixels. O’Gorman [23] described
a bottom-up algorithm that starts with connected components
and progressively groups them into word-level and line-level
tokens using proximity and angle information. Kiseet al. [16]
used a computational geometry approach. They constructed
Voronoi regions for the image and associated Voronoi regions
with text regions. Small regions, which are typically associated
with noise or words, were pruned to have line and zone level
regions. None of the above algorithms create hierarchical
descriptions or allow users to specify document structure
information. Furthermore, they do not provide methods for
estimating threshold parameters from groundtruth data. A
rigorous empirical comparison of these algorithms can be
found in Mao and Kanungo [20].

Language models have been successfully used in many
areas. Formal languages represented by the grammatical rules
have been used for pattern recognition [7]. N-gram and Hidden
Markov Models (HMMs) are very popular language models
used in speech recognition [24]. Language models such as
finite state automaton have been used for text recognition
at the text line level [17], [3]. Other language models such
as attributed context-free grammar has been proposed for
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Fig. 1. Generative stochastic document model. This model simulates the generation process of document images. Document images with different physical layout
styles, logical structures, and degradation levels can be obtained by varying the parameters of the model.

recognizing two-dimensional (2-D) mathematics in [4] and
implemented in [9].

The notion of style-directed recognition, to our knowledge,
has been addressed by very few researchers. Kopec and Chou
[17] describe an algorithm for segmenting textlines for a column
of text that is modeled using a probabilistic finite state grammar.
However, their algorithm i) assumes that it is given the tem-
plates for symbols in the language, which is not the case in our
problem since we need not have the character templates in a
bilingual dictionary for a new language pair, ii) assumes that
the columns are segmented by some other procedure, and iii)
does not provide any estimation procedure for the model param-
eters. Tokuyasu and Chou [28] recently proposed a communi-
cation theory approach to 2-D page segmentation. They model
the ideal input field by vertical and horizontal fields and use the
Turbo decoding approach to estimate the 2–D field from the ob-
servations. However, the theory does not allow users to specify
the width and height of lines and columns. Furthermore, the ar-
ticle contains very limited experimental verification of their al-
gorithm. Both algorithms mentioned above maximize the proba-
bility of a message given the image. Krishnamoorthyet al.[18].
described a hierarchical segmentation algorithm that constructs
a tree in which each node represents an axis-parallel region in
the image. Users could specify block grammars for individual
blocks. However, in the presence of noise the parsing algorithm
can fail, and no parameter estimation algorithm is provided.
Spitz [26] recently reported a system for style-directed recog-
nition. While the user can specify the style interactively, the al-
gorithm itself is a rule-based system. No objective function is
minimized in either [18] or [26].

III. GENERATIVE STOCHASTICDOCUMENT MODEL

Models and quantitative metrics are crucial for designing
good algorithms. In particular, generative models allow an algo-
rithm designer to perform scientific experiments that allow us
to evaluate and characterize the performance of the algorithm.
In this section, we describe a generative stochastic document
model that is used in Section IV for designing a segmentation
algorithm. Evaluation metrics and experimental protocol,
which is based on this model, is described in Section V.

A. Overview of the Generative Stochastic Document Model

We model the document image generation process as a five
step process: 1) First a logical structureis created according
to a logical structure model . The logical structure of docu-
ment images specifies semantic relations among logical com-
ponents. The semantic relations can include the reading order
and the hierarchical nesting of logical components. 2) Next,
each logical component is filled with text according to a text
language model . 3) Physical style markup is performed ac-
cording to a physical layout model to specify the physical
appearance and spatial relation of the logical components on a
physical medium. In other words, physical style markup spec-
ifies a physical layout structure . 4) A typesetting software
converts the symbolic file into a noise-free imageand its
groundtruth metadata . 5) Finally, the noise-free image is de-
graded using a document border noise modeland a local
noise model to generate a noisy image. These degradation
steps model the noise introduced during printing, photocopying,
faxing, microfilming, etc.



KANUNGO AND MAO: STOCHASTIC LANGUAGE MODELS FOR STYLE-DIRECTED LAYOUT ANALYSIS OF DOCUMENT IMAGES 585

Fig. 2. (a) Real Chinese–English dictionary page, (b) a synthetically generated noise-free dictionary page, and (c) a synthetically generated noisy dictionary page
with associated groundtruth using our model.

Thus our proposed generative stochastic document model
is a five-tuple and associated

model parameter is denoted as . An
overview of the model is illustrated in Fig. 1. In the following
subsections, we describe the physical layout structure model

in detail and briefly introduce the degradation model.
A generative stochastic document model based on stochastic

attribute grammars was proposed in [5]. Their model is sim-
ilar to ours in that they also use stochastic grammars to model
the logical structure of documents. However, they did not have
a explicit physical layout model for specifying physical layout
styles of the documents. A simple channel model is used for
simulating document degradation. Moreover, there is little ex-
perimental verification of effectiveness of their model.

B. Physical Layout Structure Model

Language models can be used to efficiently model syntactic
or structural information. Language models are typically repre-
sented by formal grammars [1], which compactly encode struc-
tural relations in the given data. Language models can be used as
both generators and recognizers of languages. Language models
of different descriptive power can be used to represent syntactic
structures of different complexity. Depending on the language
model used, efficient parsing techniques have been used to rec-
ognize the structure of given data.

Deterministic language models can result in ambiguous
parsing results when the input is probabilistic or when the
grammar is ambiguous. In real applications, some grammatical
rules are used more often than others. In deterministic language
models, we can not learn the relative significance of grammat-
ical rules from a given training dataset. Stochastic grammars
and the associated parsing and learning techniques can be
used to address the above issues. In stochastic parsing, the

best parsing result is considered as the parse with the highest
probability [10], [27].

The physical layout of the document image specifies the
physical appearance and spatial relation of the document’s
physical components. While there are formal languages like
regular language, context-free, and context sensitive languages
[1], each of which having different levels of descriptive power,
we found that for the problem of expressing the varieties of
physical regions in dictionaries, regular languages are suffi-
cient. The grammar for representing the 2-D hierarchical
arraignment of physical regions are described in detail in [30].
In this paper, we use flat form of the grammar. For a given
region on a document image and a regular grammarand
its parameter , the physical layout structure of the region
can be recognized by parsing an observed sequence of tokens
using the given grammar. We use stochastic regular grammar

to model the physical layout structures of
document regions, where is a set of nonterminal symbols,

is a set of terminal symbols, or ,
, is a set of production rules, and is a

special start symbol which is a nonterminal symbol. For each
production rule in , we assign a probability measure. We use
model parameter to represent probabilities of all production
rules where or , ,

is a set of production rule probabilities, where
or , .

Terminal symbols are physical components that can not be fur-
ther divided, and nonterminal symbols are groups of terminal
symbols. For instance, in the application of physical layout
analysis of a double column journal title page,header block,
footer block, column blockare terminal symbols if they are the
most basic physical components that users are interested in,
whereasbody is nonterminal symbol since it consists of two
columns.
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TABLE I
STOCHASTICREGULAR GRAMMARS AND THEIR PARAMETERS FORREPRESENTING THEPHYSICAL LAYOUT STYLES OF DICTIONARY PAGES

C. Local Noise Model

Local noise is introduced during printing, scanning, photo-
copying, faxing, microfilming of noise-free document images.
We use the document degradation model proposed and val-
idated by Kanungoet al. [12] as our local noise model .
Kanungo and Zheng [15] proposed a method for estimating the
parameters of the degradation model. This degradation model
has six parameters: , where controls
the flipping probability of all pixels, controls the flipping
probability of foreground pixels, controls the flipping
probability of background pixels, andspecifies the size of a
disk that is used in the morphological operations. By varying
these parameters, document images with different degradation
levels can be generated.

Certain types of noise can be structured and concentrated at
certain locations in a document image. Black streaks at the edges
of document image are examples of such document noise. In
this paper, we integrate the black streaks at the edges of docu-
ment images into our grammatical description. Numerous doc-
ument image deskewing algorithms [19] have been proposed in
the past. We assume one of these algorithms has been used to
deskew the images in our document datasets before their recog-
nition since our algorithm is sensitive to document skews.

D. Modeling the Physical Layout Style of Dictionary Pages

We now use our proposed generative stochastic document
model to model a Chinese-English dictionary page. In Fig. 2(a),
a scanned real dictionary page fromABC Chinese–English
Dictionary is shown, a synthetically generated clean dictionary
page and a synthetically generated noisy dictionary page with
associated groundtruth using our model are shown in Fig. 2(b)
and (c).

The synthetically generated dictionary pages are typeset into
a two-column layout and have a header on each page. The pos-
sible physical entities in a dictionary page include top margin,
bottom margin , left margin , right margin , header , body

, column , line and gap . We use a grammar to repre-
sent the physical layout styles of dictionary page. The descrip-
tion of logical model components can be found in [21]. Table I
shows the grammar and associated parameters used for repre-
senting physical layout styles of dictionary pages.

In the following section, we present a recognition algorithm
for deriving the physical layout structure using the stochastic
regular grammar model described in this section.

IV. PHYSICAL LAYOUT STRUCTUREANALYSIS ALGORITHM

We pose the physical layout structure analysis problem as an
optimization problem. Our algorithm is based on the generative
model described in Section III. We formulate the problem of
physical layout analysis of document images as follows: For a
given document image, a physical layout model and its
estimated model parameter, find a physical layout structure

such that

(1)

Kopec and Chou [17] proposed and investigated a similar opti-
mization framework based on template matching and a simple
channel model.

A. The Algorithm

We use a weighted finite state automaton to represent the pro-
duction rule used at each level of document physical layout tree.
Since each symbol in a production rule is mapped to a phys-
ical component of a document image, we assign each state in
the weighted finite state automaton to a symbol in the produc-
tion rule. The observations of each state are made on its cor-
responding physical component and are probabilistic. We com-
pute an observation distribution for each state. We model the
physical features of document physical components by state du-
ration densities. For instance, if a physical component is large
in size, the duration in the state corresponding to this physical
component will be longer. State transitions signify the bound-
aries of physical components.

We now describe a model that represents the language using a
state transition probability matrix , an initial state distribution

, and an observation model represented by a state observation
distribution matrix . The language model is a weighted finite
state automaton that is suitable for representing stochastic reg-
ular grammar. The Viterbi algorithm is used to search for the
best state sequence for a given observation sequence and model
parameters. While this model can be used to segment and label
one-dimensional (1-D) signal simultaneously, it does not use the
explicit state duration densities, which in our application rep-
resent the physical features of document physical components.
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We call this model model-I. We augment the above model by a
set of state duration densities. Duration Hidden Markov Models
and associated estimation and recognition algorithms have been
studied in the speech context [25]. We provide a detailed deriva-
tion for finding the best state and state duration for a given
observation sequence and duration HMM model parameters in
Appendix. We call the new model model-II. We compare the
performance of the two models in Section VII.

We now formally describe the model-II algorithm. Let
be a sequence of states, each of which

corresponds to a terminal or nonterminal symbol on the right-
hand-side of the production rule at current level. The terminal
or nonterminal symbols in the production rule denote a doc-
ument’s physical components like header, body, column, etc.
at current tree level. Let ; ,

be a discrete observation symbol sequence
of length . We model the physical extents of components on
a document image by state duration distributions. Let

be the parameter of the model-II,
where is the length of input, is the number of states, is
the maximum value of a state observation,is the maximum
length of a state duration, ,

is the state transition probability matrix,
, is the state observation

distribution matrix, , is
the state duration distribution matrix, is the initial state dis-
tribution. Note that since state duration is considered explicitly
within a state, the state transition probabilities to the same state,

are set to 0.
The problem of finding the best segmentation is equivalent to

finding the best state sequence (and state duration lengths) using
model-II. That is

(2)

where . Now define the quantity

(3)

which is the highest probability of a path producing observation
sequence and , and terminating
in state at time . We can rewrite as

(4)

where the maximum is taken subject to the constraints
, , ,

, . We use to
denote the model parameters of the model-II. We can express

recursively as follows (see Appendix for proof):

(5)

In order to avoid machine precision underflow, we use the
version [25] of the recursive relation as follows:

(6)

We can see that

(7)

The last step in the derivation is justified since is a
constant with respect to. This derivation result is what was
required in (3). Since determines a unique segmentation
result that corresponds to a unique physical layout struc-
ture for the given model , we can rewrite (7),

.

B. Application: Physical Layout Analysis of Dictionary Pages

The physical layout structure of the dictionary page can be
represented by a grammar shown in Table I. We denote tree
level 1 as page level, denote tree level 2 as column level, and
denote tree level 3 as textline level. Note that we are optimizing
1-D segmentation at each level of our model separately. At each
level, the segmentation is performed on either X or Y black pixel
projection profile depending on the production rule used at that
level. When the segmentation is completed on all levels, a hier-
archical segmentation of the given document image is achieved.

By performing segmentation recursively on X or Y projec-
tion profile, we reduce a 2-D segmentation problem to a 1-D
problem. We use our proposed algorithm to segment and label
1-D projection profilesimultaneously. Our approach is similar
to the method used in Krishnamoorthyet al. [18] in that both
methods use grammatical models to analyze X or Y projection
profiles of document images, and both methods therefore as-
sume Manhattan layout of documents. In our method, we pose
the analysis procedure as an optimization problem and find the
optimal parsing result using stochastic grammars. In [18], the
authors use deterministic grammars in their analysis and hence
do not produce an optimal result. If a new representation for
documents with non-Manhattan layouts is available, our mod-
eling, analysis, and recognition methodology can be applied to
them.

Let be the current projection pro-
file where the value of each is the black pixel count along
the projection location and is the length of . We partition

into strips. We compute the ratio of black pixel count in
each strip and the area of the strip and quantize the ratio into
observation symbols with discrete levels. We then construct
a weighted finite state automata for each tree level as shown in
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Fig. 3. One-dimensional segmentations on projection profiles using the model-I and model-II approaches at page level (level 1), main body of text level (level 2),
column level (level 3) and textline (level 4). At each level, we show the document region from which projection profile is obtained, the projection profile direction
and histogram, production rule and its model-I and model-II representations, and segmentation result. Segmentation takes place at state transitions in the finite
state automata. Note that we incorporate noise streaks at the edges of the image into our grammars.

Fig. 3. Both models, model-I and model-II, are used to find the
optimal segmentation. Each distinctive state in either one of the
two models corresponds to a physical component, state transi-
tions signify the boundaries of physical components. Therefore,
1-D segmentation can be achieved by finding state transitions in
the optimal state sequence generated by the Viterbi algorithm.
In the next section we compute the performance of both models.

V. PERFORMANCEEVALUATION METHODOLOGY

An algorithm is typically designed to perform a particular
task under certain assumptions specific to the application do-
main. The algorithm should have satisfactory performance on
the application domain and may fail on other domains where the
algorithm assumptions are not valid. In this paper, we use our
proposed generative stochastic document model to perform con-
trolled experiments that allow us to 1) characterize the behavior
of the algorithms, 2) quantitatively compare the performances of
the algorithms, and 3) and identify their break-down points. In

this section, we describe a performance evaluation methodology
adapted from the method described in [20], for performing con-
trolled experiments.

A. Methodology

We use our generative stochastic document model to au-
tomatically create large scale synthetic datasets with precise
groundtruth and controlled degradation levels. Letbe a
synthetically generated dataset using our proposed model

. The dataset contains document image and groundtruth
pairs where denotes the image index anddenotes
the image degradation level. The steps of our experimental
methodology for characterizing the performance of document
structure analysis algorithms are as follows.

1) Use the generative model with a set of parameters
to generate a dataset.

2) Randomly partition the dataset into a mutually exclu-
sive training dataset and test dataset. Thus
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and , where is the empty dataset. Each ele-
ment in the datasets is an image-groundtruth pair
where denotes the image index and denotes
the degradation level of the image. We can control the
dataset generation by adjusting the model parameter set

. Hence, we can perform controlled experiments by
generating datasets with different physical layout styles,
logical structures and degradation levels.

3) Define a meaningful and computable performance metric
where is an document image with index

and degradation level, is the groundtruth of , and
is the structure analysis result on.

4) For a document structure analysis algorithm, estimate
its parameter set using the training dataset with
degradation level where . We estimate the algo-
rithm parameter vector on different degradation level
. These estimated models are used in step 5 to study the

robustness of the algorithm to document noise.
5) Evaluate the algorithm with the estimated

parameters using the test dataset over
different degradation levels . Let

where
is a function of the estimated parameter

and the performance metricon each document image
and groundtruth pair in the test dataset ,
and is the structure analysis function corre-
sponding to . The function is defined by the user. In
our case,

which is the average of the performance metric
on each document image and

groundtruth pair with degradation level in the
test dataset .

6) Perform error analysis in different error categories over
different degradation levels on both the training and test
datasets to identify/hypothesize why the algorithms per-
form at the respective levels.

B. Performance Metric and Error Measurements

In this section, we provide the definitions of a performance
metric and a set of error measures based on set theory and math-
ematical morphology [8]. Currently, the performance metric and
the error measures are based on textlines, i.e., they evaluate the
document structure analysis result only at the textline level.

Let be the two horizontal and
vertical length thresholds in number of pixels that deter-
mine if the overlap between a groundtruth textline and a
segmented line is significant or not. and are de-
fined as and

, where and
are two thresholds in pixels, and are two

thresholds in percentage, and are the height and width of
the groundtruth textline. Let be a threshold in percentage
that determines if a groundtruth textline is segmented with
excessive vertical margin or not. In our experiments, we set the

thresholds as , , , ,
and . Let be a set of groundtruth textlines.
Let

be a rectangle centered at with a width of
pixels, and a height of pixels where

and denote the and coordinates of the argument,
respectively.

We now define two morphological operations: dilation and
erosion [8]. Let . Morphologicaldilation of by
is denoted by and is defined as

for some . Morphologicalerosionof by is
denoted by and is defined as
for every . Let define the domain of its argument,
let be a set of segmented lines, we now define
five types of textline errors and a performance metric (textline
detection accuracy):
1) Groundtruth textlines that are mis-detected:

2) Groundtruth textlines whose bounding boxes are cut:

for some

3) Groundtruth textlines that are merged:

and

such that

4) Noise lines that are falsely detected (false alarm):

5) Groundtruth textlines that are segmented with excessive ver-
tical margins (vertical margin):

Let the number of groundtruth error textlines be
(mis-detected, cut, or merged), and let the

total number of groundtruth textlines be . We define the
performance metric (textline detection accuracy) as

A more general metric definition can be found in [20]. We define
mis-detection error, cut error, merge error, false-alarm error, and
vertical margin error as follows:
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TABLE II
STOCHASTICGENERATIVE DOCUMENT MODEL AND MODEL PARAMETERSVALUES FORREPRESENTING THEPHYSICAL LAYOUT STYLES OFDICTIONARY PAGES IN

THE SYNTHETICALLY GENERATEDTRAINING AND TESTDATASETS. THE VALUES OFMODEL PARAMETERS AREMEASUREDFROM REAL DICTIONARY IMAGES.
NOTE THAT THE NUMBER OFLEVELS HERE ISDIFFERENT FROM THAT INFIG. 3 SINCE BORDERNOISESTREAKS AREINCORPORATED IN THEGRAMMAR IN FIG. 3

VI. EXPERIMENTAL PROTOCOL

We use our proposed stochastic generative document model
to randomly generate a dataset of 160 noise-free synthetic

dictionary pages with groundtruth at 300 dpi. The symbolic text
source of the database is Optilex [22], a large (600K entries)
machine-readable version of a Chinese-English dictionary. We
randomly select 50 pages from the dataset as the training set,
and consider the remaining 110 pages as the test set. We then
resample the dataset and its groundtruth at 200 dpi and 400
dpi. Therefore, we create three datasets with same content but
different resolutions. The parameters of the physical layout
model are shown in Table II. Kanungoet al. [13], [14] have ad-
vocated model-based performance evaluation and break-down
point identification since 1990. We use a modified performance
evaluation methodology to identify break-down points of the
algorithm.

The groundtruth of the training and test datasets are at the
textline level. We modified the DVI2TIF software to generate
textline groundtruth. Each page in the training dataset is de-
graded into three degradation levels using a document degra-
dation model [12]. The pages in the test dataset are partitioned
into 10 groups and pages in each group are degraded using one
of 10 degradation levels.

We implemented our software with the C programming lan-
guage. The compiler used is gcc-2.96. The platform is a 333
MHz PC running Linux 7.0 operating system. The model-I and
model-II algorithm implementation is based on [11].

A. Algorithm Training

Each algorithm is trained on the training dataset at three
degradation levels [noise-free images, images with degradation

, and images with degradation
] and at three resolutions

(200 dpi, 300 dpi, and 400 dpi). Therefore, each algorithm has
nine estimated model parameter sets. The algorithm parameter
estimation uses the groundtruth of the dictionary pages in the
training dataset, and the simple event occurrence frequency
counting method. For the model-I algorithm, the parameters
to be estimated are state transition probability matrix, state
observation distribution matrix and initial state distribution

. For the model-II algorithm, in addition to the parameters
of the model-I algorithm, we need to estimate state duration
length distribution matrix . We set the maximum number of

observation value to 100, and the width of observation strip
to 6 pixels at 300 dpi for level 1, 2, and 3 in Fig. 3. We set

the maximum number of observation value to 100, and the
width of observation strip to 3 pixels at 300 dpi for level 4 in
Fig. 3. The parameter values of the images sampled at 200 dpi
and 400 dpi are computed proportional to those for the images
sampled at 300 dpi.

B. Algorithm Performance Evaluation

We evaluate the model-I algorithm and the model-II al-
gorithm on three test datasets, each of which is sampled
at a different resolution (200 dpi, 300 dpi, or 400 dpi)
and each of which has 110 document images degraded at
10 different levels [ with

]. In order to compare the effect of
training dataset of different degradation levels and of different
resolutions on the evaluation result, we use nine estimated
model parameters for each algorithm in the testing procedure.
Therefore, for each algorithm, we have nine evaluation results
based on nine estimated algorithm model parameters. We
can then compare the robustness of the model-I and model-II
algorithms with respect to the image degradation levels and the
image resolutions.

VII. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section we empirically characterize the training
and recognition algorithms using the experimental protocol
described in Section VI. We compare the model-I and the
model-II physical layout analysis algorithms and analyze their
errors in controlled experiments.

A. Algorithm Training Results

In Fig. 4 we show the estimated observation distribution
matrix of both algorithms, and the estimated state duration
distribution matrix of the model-II algorithm at the textline
grammar level and at 300 dpi resolution.

We can see that with the increase of noise level, thecurve
moves toward to the right. This is because the observation
measurements for noisy images have a larger value than the
same observation measurement for clean images. For the
curve, the state duration distribution corresponding to textline
height originally has three peaks. The three peaks corresponds
to the “x” textlines without ascenders nor descenders, the “b”
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Fig. 4. (a) Estimated observation distribution matrixB on noise-free images, (b) on degraded images at degradation level 0.05, and (c) on degraded images at
degradation level 0.09. State duration distribution matrixC is shown in (d). Note theB matrix is the same for the model-I and model-II algorithms, andC is for
model-II only and is the same for all degradation levels. The training datasets have a resolution of 300 dpi.

Fig. 5.(a) Hierarchical segmentation result on page level, (b) main body of text level, (c) column level, and textline level (d) using the model-II algorithm. The
degradation level of the noisy image is' = (0:05; 1:0; 2:0; 1:0; 1:0; 3). The algorithm parameters are estimated on the training dataset with the same degradation
level.

and “j” textlines with only ascenders or descenders, and the
“bj” textlines with both ascenders and descenders.

B. Algorithm Performance Evaluation Results

An algorithm’s performance depends on the class of doc-
ument images used for training. If the test images are drawn
from a set outside of this class, the performance of the algo-
rithm typically deteriorates. In order to study this break-down
effect, we design our test dataset to contain document images
that belong to the training class as well as document images that
do not belong to the training class. Furthermore, we train and
evaluate our algorithms on images with different resolutions in
order to study the sensitivity of our algorithms to image reso-
lutions. Using nine sets of estimated algorithm parameters, we
evaluate the model-I algorithm and the model-II algorithm on
three test datasets each of which is sampled at a certain resolu-
tion and each of which has 110 images degraded over 10 degra-
dation levels. There are 10 images at each degradation level and
at each resolution. We report average textline detection accu-
racy as the performance metric for each algorithm. We also re-
port average algorithm timing for each algorithm. Fig. 5 shows
a sample of the hierarchical segmentation at four levels (page
level, main body of text level, column level, and textline level)
using the model-II algorithm. Fig. 6 shows the evaluation results

of the model-I and model-II algorithms in terms of performance
metric (average textline detection accuracy).

We can see that the performance of the model-II algorithm
is significantly better than that of the model-I algorithm in all
cases. This is mainly due to the fact that the state duration dis-
tributions are explicitly used in the model-II algorithm. Since
the state duration distributions corresponds to the physical di-
mensions of physical components such as header height, column
width and height, textline height and gap, etc., the performance
of the model-II algorithm is more robust than that of the model-I
algorithm in the presence of document noise. We can also see
that the two algorithms achieves optimal performance at the
noise level used for algorithm training. The performance of the
two algorithms deteriorates rapidly beyond the training degra-
dation level since the algorithms begin to have inaccurate seg-
mentation at each of the four segmentation levels.

For noise-free training images, observations tend to have
smaller values and the estimated observation distribution ma-
trix for both models are biased toward smaller observation
values. Hence, when these estimated model parameters are used
to segment dictionary pages with more background noise, the
both algorithms will consider some observation measurements
are made from text regions even though they are actually
made from gap regions, and tend to merge the text regions.
Since the model-II uses explicit state duration densities, it can
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Fig. 6. Performances of the model-I and the model-II algorithms using the model parameters estimated on noise-free training images at image resolution
(a) 200 dpi, (b) 300 dpi, and (c) 400 dpi, respectively; on degraded images with degradation parameter' = (0:05; 1:0; 2:0; 1:0; 1:0; 3) at image resolution
(d) 200 dpi, (e) 300 dpi, and (f) 400 dpi, respectively; and on degraded images with degradation parameter' = (0:09; 1:0; 2:0; 1:0; 1:0; 3) at image resolution
(g) 200 dpi, (h) 300 dpi, and (i) 400 dpi, respectively. Error bars represent 95% confidence intervals.

adjust the segmentation favorably whereas the performance
of the model-I algorithm deteriorates quickly due to merging
of many textlines. However, when the degradation level is too
far beyond the training degradation level, the positive effect of
state duration densities in model-II is overcome by erroneous
estimation of observation distribution matrix and textline
detection accuracy begins to deteriorate.

When the two algorithms are trained on the noisy images,
the reverse effect takes place, i.e., the algorithm parameters are
estimated with a bias toward larger observation values. Hence,
when these estimated model parameters are used to segment dic-
tionary pages with less background noise, both algorithms will
consider some observation measurements that are made from
gap regions even though they are actually made from text re-
gions, and tend to split the text regions. Similarly, when the im-
ages in the test dataset are too clean, the effect of state duration

densities in model-II is overcome by erroneous estimation of ob-
servation distribution matrix and textline detection accuracy
begins to deteriorate.

When our algorithm is evaluated on datasets with different
resolutions, the performances across different resolutions are
relatively stable, which demonstrates that our algorithms are rel-
atively insensitive to image resolutions.

In Fig. 7, we provide empirical timing analysis of the two
algorithms. The timing performance of model-II is worse than
that of model-I. This is because we search for an optimal seg-
mentation over a 2-D space (state and duration) in model-II al-
gorithm, whereas we search for an optimal segmentation over a
1-D space (state) in model-I algorithm. The algorithm timing in-
creases with image resolution level since it takes our algorithms
more time to read high resolution images than low resolution
images.
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Fig. 7. Algorithm timing of the model-I and the model-II algorithms using the model parameters estimated on noise-free training images at image resolution
(a) 200 dpi, (b) 300 dpi, and (c) 400 dpi, respectively; on degraded images with degradation parameter' = (0:05; 1:0; 2:0; 1:0; 1:0; 3) at image resolution
(d) 200 dpi, (e) 300 dpi, and (f) 400 dpi, respectively; and on degraded images with degradation parameter' = (0:09; 1:0; 2:0; 1:0; 1:0; 3) at image resolution
(g) 200 dpi, (h) 300 dpi, and (i) 400 dpi, respectively. Error bars represent 95% confidence intervals.

C. Error Analysis

In this section, we analyze the following five textline-based
error categories: groundtruth textline merge error rate,
groundtruth textline mis-detection error rate , groundtruth
textline cut error rate , falsely detected noisy line error rate

, and excessively vertical margin error rate . Due to
space limitation, we report the error analysis results for images
at 300 dpi resolution. Fig. 8 shows the error characteristics
of the two algorithms evaluated on test datasets at different
degradation levels and sampled at 300 dpi.

In the case that the two algorithms are trained on noise-free
training dataset, when the degradation level of the test dataset
increases, the groundtruth textline merge error rate of the
model-I algorithm increases drastically. Since the estimation

is biased toward noise-free images, some observation mea-
surements made on the noisy images are considered as text
region even though they actually arise from gap regions. As a
result the algorithm fails at higher level of the hierarchy and
many text lines are merged. Moreover, at degradation level
0.01, since one of document margins is segmented as one of
the columns, many false-alarm textlines are created. The fact
that many groundtruth textlines are merged also results in high
vertical margin error rate. When the degradation level of the test
dataset increases, the model-II algorithm still has much better
segmentation at higher levels of the hierarchy than the model-I
algorithm. However, model-II starts to have inaccurate textline
level segmentation at higher degradation levels, which results
in some textlines being split and parts of some textlines being
merged with adjacent textlines. Therefore, there is a drastic
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Fig. 8. Five types of the segmentation errors for each algorithm using three estimated model parameters and at image resolution of 300 dpi. The five types of
error are: groundtruth textline mis-detection error rate, groundtruth textline merge error rate, groundtruth textline cut error rate, falsely detected noise lines error
rate, and excessive vertical margin error rate. The errors in (a), (b), (c), (d), and (e) are the algorithm segmentation errors when algorithm parameters are estimated
on noise-free training dataset. The errors in (f), (g), (h), (i), and (j) are the algorithm segmentation errors when algorithm parameters are estimated on degraded
training dataset using degradation parameter' = (0:05; 1:0; 2:0; 1:0; 1:0; 3). The errors in (k), (l), (m), (n), and (o) are the algorithm segmentation errors when
algorithm parameters are estimated on degraded training dataset using degradation parameter' = (0:09; 1:0; 2:0; 1:0; 1:0; 3).

increase in both merge and cut error rate. Since model-II uses
explicit state duration densities, the merge error rates at smaller
degradation levels are lower than those of model-I algorithm.
Since many groundtruth textlines are vertically split, vertical
margin error rate is very low. There is no mis-detection error
for both model-I and model-II algorithms.

In the case that the two algorithms are trained on training
dataset with the degradation level 0.05, the error rate results on
and beyond degradation level 0.05 resemble those in the last
case. This is again because algorithm parameters are trained
with a bias toward the cleaner images, which, in this case, are
the images with degradation level of 0.05. When degradation
level is in the range of no degradation to the degradation level
of 0.04, cut error rate for both algorithms are much larger at
lower degradation levels than at higher degradation levels.
This is because the model estimation is biased toward noisier
images, which results in some observation measurement made
on clean images being considered as gap regions even though
they actually come from text regions. Therefore, the text
regions with relatively small observation measurement values
tend to be split. The model-I algorithm also has relatively large
merge errors since inaccurate page level segmentation which
splits parts of the two columns and also merges parts of the two
columns.

In the case that the two algorithms are trained on training
dataset with the degradation level 0.09, the error rate results on
and beyond degradation level 0.09 are similar to the results in
the first case for the same reason that is mentioned in the first
case paragraph. When degradation level is in the range of no
degradation to the degradation level of 0.08, the error rate results
resemble those from no degradation to the degradation level of
0.04 in the second case for the similar reasons mentioned in the
second case paragraph.

VIII. SUMMARY

We have presented an end-to-end framework for analyzing
the physical layout structure of document images. In this frame-
work, we first proposed a generative document model using sto-
chastic language models to represent document physical layout
styles and document logical structures. We represented docu-
ment’s physical layout structure by stochastic regular gram-
mars, and presented a new segmentation algorithm based on
a probabilistic finite state automaton. In the proposed physical
segmentation algorithm (called model-II algorithm), we incor-
porated information about the physical style layout parameters
by estimating a set of state duration distributions. We found the
best physical segmentation result by finding the best state se-
quence and state duration length sequence in the probabilistic
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finite state automaton. We compared our algorithm with a base-
line physical segmentation algorithm (called model-I algorithm)
and found that the model II algorithm performs significantly
better than the model I algorithm.

The proposed generative document model was used in
designing controlled experiments in which a training dataset
and a test dataset with groundtruth and of different degradation
levels were synthetically created. The proposed model-II and a
baseline model-I algorithm were trained on the training dataset
and then evaluated and compared on the test dataset. We found
the model-II algorithm is more robust to document noise then
the model-I algorithm due to its consideration of state duration
densities.

In future we plan to i) use better feature models for modeling
state observation distributions, ii) extend the model to non-Man-
hattan layouts, and iii) incorporate model-based logical struc-
ture analysis of document page images.

APPENDIX

VITERBI PROCEDURE OFMODEL-II A LGORITHM

Let , ,
, , be the highest probability of a path

producing observation sequence and state sequence
, and terminating in state at time . We

can show that

(8)

where the maximum is taken subject to the constraints

We use to denote the model parameters of the model-II. We
now provide a detailed derivation of a recursive relation of the
quantity defined in (8). From now on, we omits in the fol-
lowing derivation for simplicity. We can rewrite (8) as

By Bayes’ rule, we get

By the “Markovity” assumption, we get

By combining the first and last terms, and using Bayes’ rule on
the second term, we get

Assume that the duration distribution of a state is independent
from observations of the state. Since the observations are inde-
pendent from each other given their states, we get

For simplicity we denote by and get the following recursive
relationship:

(9)

where if , if or , and
for all .
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