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Abstract

This research explores the feasibility of semantic 

similarity approaches to supporting predictive tasks in 

functional genomics. It aims to establish potential 

relationships between ontology-based similarity of 

gene products and important functional properties, 

such as gene expression correlation. Similarity 

measures based on the information content of the Gene 

Ontology (GO) were analyzed. Models have been 

implemented using data obtained from well-known 

studies in S. cerevisiae. Results suggest that there may 

exist significant relationships between gene expression 

correlation and semantic similarity. Analyses of 

protein complex data show that, in general, there is a 

significant correlation between the semantic similarity 

exhibited by a pair of genes and the probability of 

finding them in the same complex. These results can 

also be interpreted as an assessment of the quality and 

consistency of the information represented in the GO.  

1. Introduction

One of the main goals of the post-genome era is to 

integrate relevant data sources, which may be useful 

for implementing comprehensive, large-scale protein 

characterization studies. Outcomes originating from 

biological research can now be accessed through data 

repositories, which provide specialized information to 

describe the structure and function of genes and their 

products. This type of information becomes an 

important source of background knowledge, which 

may be exploited to facilitate cross-database queries 

and to support validation studies. The Gene 

Ontology  (GO) [1] is one such resource, which has

been designed to offer controlled vocabularies and 

shared hierarchies for aiding in the annotation of 

molecular attributes across model organisms. 

Moreover, it has been shown that the GO can be used 

for describing gene expression clustering results and 

for implementing advanced gene querying systems 

[1],[2].  

Incorporating background knowledge, such as that 

represented in the GO, is crucial for generating or 

testing novel hypotheses in functional genomics. The 

information derived from this process may be used to 

develop new predictive systems, which may be 

integrated with other models in large-scale genomic 

research. Moreover, it can be used to assess the 

consistency and validity of emerging knowledge. 

One strategy to exploit the information encoded in 

the GO may consist of processing it to measure 

similarity between gene products. Similarity 

assessment is at centre of important tasks in 

bioinformatics. This is fundamental to implement 

predictive models for large-scale functional genomics. 

This type of information is known as semantic 

similarity, because it takes into account information 

relevant to the definition of concepts and their inter-

relationships within a specific problem domain. 

There are two major similarity assessment schemes 

for studying proteins [3]. Structural classification 

measures similarity based on protein sequence or 

tertiary structure. Lord et al. [4] have investigated 

relationships between semantic and sequence 

similarity. They applied different semantic similarity 

measures and the BLAST tool on the Swiss-Prot 

database. Functional classification assesses similarity 

in terms of functional features such as biochemical 

pathways. It does not comprise structural similarity 

features. This paper places emphasis on the 

incorporation of ontology-based similarity for 

functional classification problems. It aims to study 

potential relationships between the semantic similarity 

of gene products and key functional properties: Gene 

expression correlation and protein complex 

membership. The results are based on the GO 

annotations from the Saccharomyces Genome 

Database (SGD). Section 2 overviews the GO and 
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applications. Section 3 introduces the problem of 

measuring semantic similarity in the GO. Section 4 

describes datasets and problems under consideration. 

Section 5 presents results. Section 6 discusses methods 

and future research. 

2. The Gene Ontology and its applications 

2.1 The Gene Ontology 

The primary goal of the GO is to define a shared, 

structured and controlled vocabulary to annotate 

molecular attributes across models organisms [1]. 

Moreover, the GO project allows users to access 

annotation information resulting from different model 

organisms. For instance, the databases SGD and 

FlyBase use terms defined by this ontology. The GO 

annotation files also provide useful information about 

the evidence for the knowledge represented in its 

taxonomies. This information is stored in the form of 

evidence codes, which is associated with each gene 

annotated using the GO. There are different types of 

evidence codes supported by the GO. For example, the 

evidence codes TAS (Traceable Author Statement) and 

IEA (Inferred from Electronic Annotation). The 

evidence code TAS refers to annotations supported by 

articles or books. In contrast, IEA annotations are 

based on results automatically derived from sequence 

similarity searches, which have not been reviewed by 

curators. The reader is referred to the GO website to 

obtain additional information on databases and 

evidence codes supported (www.geneontology.org). 

The GO consists of three ontologies, sometimes 

referred to as taxonomies: Molecular function (MF), 

biological process (BP), and cellular component (CC).  

The first ontology refers to information on what a gene 

product does. BP is related to a biological objective to 

which a gene product contributes. CC refers the 

cellular location of the gene product, including cellular 

structures and complexes. Figure 1 depicts the general 

organization of the GO and a partial view of the first 

level of terms included under MF. The reader is 

referred to [1] for further information on the GO 

design principles. These vocabularies (one for each 

ontology) and their relationships are represented in the 

form of directed acyclic graphs (DAGs). Thus, a 

hierarchy in the GO may be seen as a network in 

which each term may represent a “child node” of one 

or more “parent nodes”. There are two types of child-

to-parent relationships: “is a” and “part of” types. The 

first type is defined when a child class is a subclass of 

a parent class. For example, from the BP ontology, cell 

proliferation is a child of cell growth. The second type 

is used to describe when a child node is a component 

of a parent. For example, from the same ontology, 

DNA replication is part of the cell cycle. Figure 1.a 

illustrates a partial view of the type of DAGs found in 

the GO. 

Figure 1. Different views of the GO. (a) Typical 
example of a DAG. (b) GO taxonomies. (c) 
Partial view of the first level of MF. Dashed 
lines indicate the presence of several terms 
not included here. 

2.2 Gene Ontology-based applications 

The GO may facilitate information search tasks 

across databases, because it offers a framework to 

store different repositories using the same query terms. 

However, the relevance of the GO goes beyond 

information retrieval applications. It has been 

demonstrated that the GO may facilitate large-scale 

applications for functional genomics. One such 

application is the FatiGO system, which is a Web-

based interface for analyzing groups of genes and their 

associations with GO terms [2]. It allows the user to 

analyze the differential distributions of GO terms for 

two sets of genes. Based on statistical tests, it assigns 

the most representative GO terms associated with a 

group of genes. King et al. [5] predicted known and 

novel gene-phenotype associations in yeast. Their 

model uses phenotypic annotations extracted from the 

Munich Information Center for Protein Sequences 

(MIPS) database and gene annotations based on more 

than 3000 GO terms.  Decision trees were 

implemented to infer associations. Hvidsten et al. [6] 

combined gene expression data with annotations 

originating from the GO biological process taxonomy. 

They propose a supervised classification system, based 

on rough set theory, to predict biological processes 

linked to expression patterns. Although these methods 

process GO terms, they do not fully exploit the 

information associated with the structure of the GO 
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and its information content. The following section 

introduces the problem of measuring semantic 

similarity in the GO.  

3. Semantic similarity methods and the GO 

The semantic similarity between terms represented 

in an ontology may be defined, for example, in terms 

of topological and statistical patterns. In order to 

understand the problem of measuring semantic 

similarity between gene products based on their 

annotations, it is first necessary to describe approaches 

to calculating the similarity between annotation terms. 

Given a pair of terms, c1 and c2, a traditional 

method for measuring their similarity consists of 

calculating the distance between the nodes associated 

with these terms in the ontology. The shorter this 

distance, the higher the similarity. If there are multiple 

paths, one may use the shortest or the average distance. 

This approach is commonly referred to as the edge

counting method. A variation of this method defines 

weights for the links according to their position in the 

taxonomy [7]. Constraints exhibited by this type of 

models have been previously studied [7]. One of its 

limitations is that it heavily relies on the idea that 

nodes and links in an ontology are uniformly 

distributed. This is not an accurate assumption in 

taxonomies exhibiting variable link densities. An 

alternative approach to measuring semantic similarity 

exploits information-theoretic principles [8].  It has 

been demonstrated that this type of approaches is less 

sensitive, and in some cases not sensitive, to the 

problem of link density variability [9]. These methods 

traditionally consider only the “is a” links in a 

taxonomy.  However, it has been shown that other 

types of links may also be processed to perform 

similarity assessment [9]. Moreover, it has been 

suggested that processing all types of links as equals 

may be an effective strategy for dealing with the 

problem of orphan nodes [4],[9]. It is also important to 

stress that the majority of the GO links are “is a” links 

[4]. Thus, this bias regarding link type usage supports 

the application of this approach. This research 

considers the two types of links as equally relevant to 

the similarity assessment process. 

Let C be the set of terms in the GO.  One key 

approach to assessing the similarity between 

terms, Cc , is to analyze the amount of information 

they share in common. In the GO this information may 

be represented by the set of parent nodes, which 

subsume the terms under consideration. For example, 

in Figure 1.a the terms “morphogen activity” and 

“receptor” are subsumed by the terms “signal 

transducer activity” and “molecular function”.  Thus, 

one may say that the terms “morphogen activity” and 

“receptor” shared those attributes (parents) in common.  

For each term, Cc , p(c) is the probability of finding 

a child of c in the taxonomy. Thus, as one moves up to 

the root node of the GO (i.e. terms “molecular 

function”, “biological process” and “cellular 

component”) p(c) monotonically approaches a value 

equal to 1. This together with the principle of 

information theory allows the quantification of the 

information content of a term as equal to –log(p(c)). It 

allows to measure similarity between terms based on 

the assumption that the more information two terms 

share in common, the more similar they are. In this 

situation the information shared by two terms may be 

calculated using the information content of the terms 

subsuming them in the ontology. Such a semantic 

similarity model was proposed by Resnik [9]: 

))](log([max),(
),(

cpccsim
ji ccSc

ji
(1

)

where ),( ji ccS comprises the set of parent terms shared 

by both terms ci and cj , and ‘max’ represents the 

maximum operator. The value of this metric can vary 

between 0 and infinity. For example, in Figure 1.a 

“signal transducer activity” and “molecular function” 

belong to ),( 21 ccS , where c1 and c2 are “morphogen 

activity” and “receptor” respectively. Nevertheless, 

“signal transducer activity”, which provides the 

minimum p(c) and the maximum ))(log( cp , also 

represents the most informative term. Thus, equation 

(1) provides the information content of the lowest 

common ancestor of two terms.  

Lin [10] proposed an alternative information-

theoretic approach. It takes into account not only the 

parent commonality of two query terms, but also the 

information content associated with the query terms. 

Thus, given terms, ci and cj , their similarity may be 

defined as:  

))(log())(log(

))]([log(max2

),(
),(

ji

ccSc

ji
cpcp

cp

ccsim
ji

(2)

where p(ci) and p(cj) are defined as above. The values 

generated by equation (2) vary between 0 and 1. This 

technique may be seen as a normalized version of (1). 

Lin’s values also increase in relation to the degree of 

similarity shown by two terms, and decreases with 

their difference. For additional information on these 

and related techniques the reader is referred to [8], 

[10]. Based on equations (1) or (2) it is then possible to 

calculate the similarity between gene products based 
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on their annotations. Given a pair of gene products, gi

and gj, which are annotated by a set of terms Ai and Aj

respectively, where Ai and Aj comprise m and n terms 

respectively, the semantic similarity SIM(gi , gj), may 

be defined as the average inter-set similarity between 

terms from Ai and Aj . Thus, this method aggregates 

similarity contributions originating from all of the 

terms used to describe gi and gj. This is formally 

defined as: 

jpik AcAc

pkji ccsim
nm

ggSIM
,

),(
1

),(
(3)

P.W Lord and colleagues [4] have investigated the 

relationship between semantic and sequence 

similarities. They suggested that semantic similarity 

metrics, such as those based on equations (1) to (3), are 

correlated with gene sequence similarity. Their results 

are based on the analysis of the Swiss-Prot-Human 

database, and they indicate that semantic similarity 

may support more powerful gene sequence search 

tasks. The contribution of our study is to explore the 

potential relationships between the semantic similarity 

of gene products, their gene expression correlation and 

their membership in the same complex. 

4. Datasets and methods 

Results are based on the analysis of the GO 

database available on April 7th, 2003. This research 

comprises associations between GO terms and gene 

products included in the SGD. The analyses considered 

only non-IEA annotations due to their reliability 

(Section 2). Quantitative relationships between the 

semantic similarity of pairs of gene products and 

functional genomics data were studied. Two types of 

functional data were analyzed: Gene expression 

correlation and complex membership in S. cerevisiae.

The integration of gene expression correlation and 

semantic similarity is based on data that characterize 

mRNA transcript levels during the cell cycle of S.

cerevisiae. These data were obtained from [11]. This 

dataset was selected because of its scientific relevance, 

which has been demonstrated in previous research 

[12], and because it reflects fundamental cellular states 

of this organism. Similarity analyses were performed 

on 225 genes that show significant and periodic 

transcriptional fluctuations during the five cell cycle 

phases: early G1, late G1, S, G2 and M phases [11]. 

Each gene is described by 17 expression values. The 

total number of gene pairs generated by this dataset is 

25200. Thus, 25200 pairs of similarity values and 

25200 absolute expression correlation values were 

calculated. Expression correlation was calculated using 

the well-known Pearson correlation coefficient. 

Associations between semantic similarity and protein 

complex membership were studied using a dataset 

consisting of 83 pairs of proteins, which were 

characterized by Jansen et al. [12].  Each pair is 

labelled on the basis of their membership (or non-

membership) in the same protein complex in S.

cerevisiae. There are 46 pairs categorized as belonging 

to the same complex (true positives). Jansen et al.

showed that these predictions exhibited low error rates 

in a study that integrated several whole-genome data 

resources, using the MIPS complexes catalogue as the 

gold standard. In our study similarity values were 

calculated for each pair. Graphical analyses and 

ANOVA were performed to visualize potential 

correlations between semantic similarity of a pair of 

genes and the probability of finding them in the same 

complex. 
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Figure 2. Expression correlation and GO-
based similarity. (a) MF, (b) BP and (b) CC 
taxonomies. Mean absolute expression 
correlation values for each similarity interval 
and their 95% confidence intervals. Similarity 
based on equation (1). 
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5. Results 

5.1 GO-based similarity and expression data 

Figure 2 shows expression correlation values 

between pairs of gene products against semantic 

similarity. The axis of abscissas is divided into a 

number of similarity intervals, and the axis of ordinates 

shows the absolute mean expression correlation values 

for these intervals and their 95% confidence intervals.  

Each panel in Figure 2 summarizes information from 

the MF, BP and CC taxonomies.  
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Figure 3. Distribution of semantic similarity 
values for GO taxonomies: (a) MF, (b) BP, (c) 
CC, based on equation (1). 

These analyses are restricted to non-IEA 

annotations and based on equation (1). In general, high 

similarity values are associated with high expression 

correlation values, and weak semantic similarity is 

associated with low expression correlation. By 

augmenting or reducing the number of similarity 

intervals this trend is observed for extreme values: 

lowest/highest similarity/correlation values for all 

ontologies. This response is significantly stronger in 

the case of the lowest expression correlation values. 

One factor that should be considered to evaluate the 

relevance or reliability of these outcomes is the 

relatively small number of high similarity values 

generated by this dataset and the important variability 

of these values. Figure 3 depicts the distribution of 

semantic similarity values generated by the GO 

taxonomies. Figure 4 illustrates results based on 

equation (2) obtained for all the taxonomies. They are 

in general consistent with the results obtained with 

equation (1). These figures also suggest that the 

strongest and weakest semantic similarities may be 

linked to the highest and lowest expression correlation 

values respectively. 
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Figure 4. Expression correlation vs. GO-based 
similarity using (a) MF, (b) BP and (c) CC 
taxonomies. Similarity based on equation (2). 

5.2 GO-based similarity and protein complex 

membership

Figure 5 summarizes the relationship between 

equation (1) and protein complex membership for each 

GO hierarchy. The dataset consisted of 83 pairs of 

proteins characterized by Jansen et al. [12], in which 

each pair is labeled on the basis of their membership 

(or non-membership) in the same complex. Thus, 

Figure 5 portrays the probability of finding in the same 

complex two proteins exhibiting a similarity value 

within an interval, SS. This probability is referred to as 

P(same_complex|SS).
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Figure 5. Complex membership and Resnik’s 
similarity. Probability, P(same_complex|SS),
of finding in the same complex two proteins 

exhibiting a similarity value within SS. Data 
obtained from [12]. Results based on (a) MF, 
(b) BP and (c) CC taxonomies. 

Figures 5.a and 5.b suggest that if two proteins 

belong to the same complex it is also likely that such 

proteins are highly similar on the basis of their 

function and involvement in biological processes. This 

relationship is significantly stronger in the case of 

function. All of the protein pairs exhibiting the highest 

similarity values can also be found in the same 

complexes (Figure 5.a).  However, the CC taxonomy 

produced results inconsistent with these observations. 

Figure 5.c indicates an inverse relationship between 

these two properties. These results are based on three 

SS intervals, but similar results were obtained for two 

and four intervals.  
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Figure 6. Complex membership and Lin’s 
semantic similarity based on the GO. 
Probability, P(same_complex|SS), of finding in 
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the same complex two proteins exhibiting a 
similarity value within SS. Results based on 
(a) MF, (b) BP and (c) CC taxonomies. 

Figure 6 illustrates the results obtained from the 

similarity model proposed by Lin. These experiments 

also indicate a significant relationship: The stronger 

the semantic similarity between two proteins, the more 

likely the possibility of finding them in the same 

complex. Nevertheless, unlike the results shown in 

Figure 5, the information represented in all of the GO 

taxonomies supports this hypothesis. Further research 

involving larger data sets is required to confirm it. 
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Figure 7. ANOVA: Semantic similarity values 
between pairs of proteins assigned to the 
same complex vs. those belonging to different 
complexes. Results based on (a) MF, b) BP 
and (c) CC, using equation (2). 

On the basis of their semantic similarity, Figure 7 

compares the differences between protein pairs 

belonging to the same complex and those assigned to 

different complexes. Similarity values are considered 

for each GO taxonomy using Lin’s metric. It also 

presents F and p values produced by this ANOVA 

procedure. It shows that there may be significant 

differences between these two categories of protein 

pairs in terms of their semantic similarity. Protein pairs 

belonging to the same complex generally exhibit 

strong similarities. These differences are significantly 

stronger in the case of similarity originating from the 

CC taxonomy (Figure 7.c). There was no significant 

difference in the results produced by the BP ontology 

(Figure 7.b). Regarding MF and BP, similar results 

were obtained with Resnik’s method. 

6. Discussion and conclusions 

Similarity models. Semantic similarity models 

have been implemented using information stored in the 

GO. Previous research in natural language processing 

has shown that information theoretic approaches may 

outperform traditional taxonomic-based similarity 

assessment methods, such as edge counting approaches 

[8],[10]. However, semantic similarity methods such as 

those proposed by Resnik and Lin may also be 

susceptible to the limitations observed in traditional 

methods. One problem that requires further 

investigation is the effect of taxonomy link variability 

on the similarity calculation process. This may 

represent a difficult problem to control using the GO 

taxonomies because of the presence of term sub-

taxonomies that may be denser than others. Resnik has 

shown that his similarity model is not sensitive to this 

problem in the case of the WordNet’s taxonomy of 

concepts [9]. 

Contributions and limitations. This research 

studied potential significant relationships between GO-

based similarity and functional genomics data. In 

general one may expect a strong connection between 

the degree of GO-based similarity and the absolute 

expression correlation of two gene products. This is 

perhaps more clearly illustrated in the case of pairs of 

genes showing a low expression correlation and weak 

semantic similarity. One factor that needs to be 

considered to interpret these results is the relatively 

small number of gene pairs producing high semantic 

similarity values. Based on the analysis of a relatively 

small number of protein pairs, this study suggests that 

pairs assigned to the same complex may exhibit strong 

semantic similarity. Such similarity levels may be 
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significantly stronger than the similarity shown by 

protein pairs belonging to different complexes. 

Applications. The relationship between GO-based 

similarity and gene expression correlation may be 

applied to support functional prediction applications 

together with other genomic resources. It may be used, 

for example, to evaluate or validate clusters of genes or 

similarity-based predictions using different types of 

data [13]. The quality of expression clusters may be 

assessed on the basis of the GO-based similarity 

exhibited by these clusters. Therefore, it would be 

useful to study methods for representing cluster 

coherence and isolation. Moreover, semantic similarity 

models may be used to automatically label gene 

clusters in terms of their coherence. Semantic 

similarity could also be applied to support annotation 

tasks. For instance, groups of gene products could be 

annotated using their lowest common ancestor rather 

than multiple annotations. These models may also 

contribute to assess differences in annotations across 

genes, within a database or across multiple organisms. 

Future work. Current studies include replication 

of experiments using recent releases of the SGD, and 

implementation of other similarity measures. Future 

research will provide stronger evidence to support 

these claims. It will be necessary to incorporate 

different and larger sets of expression data in yeast and 

other organisms. We also aim to analyze larger protein 

complex datasets. This will allow us to confirm the 

feasibility of using these models for supporting the 

prediction of complex membership. Another crucial 

problem is the integration of similarity information 

originating from the GO hierarchies. One basic 

approach is to calculate the average of the similarity 

values obtained from each hierarchy. Preliminary 

results are in general consistent with the findings of 

this paper. 
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