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ABSTRACT
NHANES II is a nationally significant medical image database
of spine x-ray images located at the National Library of
Medicine. A key feature of spine disease in these images is
the presence of osteophytes which are bony processes that
alter the shape of vertebrae. Shapes of vertebrae are conve-
niently described in shape spaces which are non-linear mani-
folds. Indexing in such non-linear manifolds is an open prob-
lem. In this paper, we describe a technique of embedding
shape manifolds in Euclidean spaces in a way that allows
the use of classical indexing techniques for indexing shape.
Application of this to the NHANES II database is also de-
scribed.

1. INTRODUCTION
The NHANES II national health survey is a database

currently maintained at the National Library of Medicine
and contains 17,000 spine x-ray images. Spine disease is of-
ten manifest in these images as osteophytes, which are bony
prominences along the boundary of the vertebral body. An
example image and a vertebra from NHANES II are shown
in figure 1. The prominence at the bottom left corner of the
vertebrae is an osteophyte (marked with a heavier line with
dots). A small set of osteophytes in NHANES II have been
graded by an expert neuro-radiologist for their severity.

The retrieval of images by osteophyte severity is an im-
portant query in NHANES II. Because manual grading of
osteophytes is tedious and time consuming, it is difficult to
create grades for all osteophytes in NHANES II. An alter-
native approach is to use the shape of the vertebra as a
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proxy for the grade of the osteophyte. Given a query image,
we seek to retrieve all images with vertebrae that have a
similar shape. We expect that the retrieved vertebrae will
have grades that are similar to the query vertebra. Further-
more, independent of osteophyte grade, retrieval by shape
is important in itself as a query mechanism.

This paper is intended to be a review paper summarizing
our recent work on shape based retrieval.

Figure 1: An example image and a vertebra from

NHANES II

1.1 Shape, Similarity Retrieval, and Indexing
Vertebrae in NHANES II images are segmented interac-

tively by a dynamic programming deformable template seg-
mentation algorithm. The algorithm works by deforming a
template along curves that are orthogonal to the template
The deformation is obtained by dynamic programming, and
is guaranteed to be optimal [2]. The result of segmenta-
tion is that the vertebral boundary is available as a set of
a fixed number of boundary points. The boundary points
inherit a numbering from the template so that points on all
boundaries are consistently numbered.

The shape of a boundary or a set of points is commonly
defined as that property of the set which is invariant to
translation, rotation, and scale changes [3]. Shape space
theory informs us that the shape of a set of points in 2-
d naturally belongs to a shape space which is a complex
projective space.

The shape of boundary points in the query vertebra forms
a query shape q. Similarity retrieval asks to retrieve k im-
ages with boundary shapes most similar to q. This is the
k-nearest-neighbor shape query. The (dis-)similarity of the
shape features is measured by a shape metric.

Nearest-neighbor queries can be carried out by a linear
search through the database. Indexing techniques can boost
the performance by providing sub-linear complexity.

Classical indexing techniques such as kd-trees are designed



to be used in Euclidean feature spaces with a Euclidean met-
ric. They cannot be used to index shape because shapes nat-
urally belong to shape spaces, which are significantly non-
Euclidean curved manifolds.

The problem of indexing for shape similarity is thus a
problem of creating indexing structures in non-Euclidean
shape manifolds. The solution we propose is to embed the
shape space back into a Euclidean space and to index the
embedded shapes with standard techniques.

2. SHAPE- AND PRE-SHAPE SPACES
Suppose we are given m points in a plane. The shape of

these points is taken to be that property which is indepen-
dent of translation, rotation, and scaling. Two sets of points
are considered equivalent if they can be mapped onto each
other exactly by some element of the similarity group. This
partitions the set of all m points into equivalence classes.
Each equivalence class represents a shape – it is the shape of
all of members of the class. The shape space is the quotient
space of the set of all m points under the above equivalence
relation. Kendall showed that for m points in the plane,
the shape space is a familiar manifold – it is the complex
projective space of complex dimensions m − 2 [3, 7].

The quotient space under the similarity group can be con-
structed by first finding the quotient space under translation
and scaling, followed by the quotienting of this space under
rotations. Let the m 2-D points be represented as a com-
plex position vector z = [x1+jy1, x2+jy2, . . . , xm+jym]T ∈
Cm, where (xi, yi) is the coordinate for the ith point, and
Cm is the vector space of m complex variables. The quo-
tient space of Cm with respect to translation and scaling
can be easily shown to be a complex sphere in Cm. This
space is called the pre-shape space. The pre-shape of z is
Z = (z − zT 1m)/‖z − zT 1m‖, where 1m = [1/m · · · 1/m]T .
We can further quotient out rotation in the pre-shape space
to get the shape space.

Each vertebral boundary in the database (which is a set
of m points) maps onto its shape in the shape space and
similarity retrieval corresponds to retrieving the k closest
shapes using a distance in the shape space.

3. INDEXING IN SHAPE SPACES
Since shape space is a non-Euclidean manifold, classical

indexing techniques cannot be used with it.
We index the shape space by embedding it back in the pre-

shape space as illustrated in figure. Suppose z1, z2, · · · , zN

are N different sets of points in the database with pre-
shapes, Z1, Z2, · · · , ZN . The average pre-shape of this en-
semble is given by the pre-shape µ̂, which is the eigenvec-
tor corresponding to the largest eigenvalue of the complex
matrix

PN

i=1
ZiZ

∗

i ([7],page 44), where Z∗

i is the complex
conjugate of Zi.

Recall that the pre-shape space is a sphere in Cm. Given
any point Zi in the pre-shape space, rotation of the original
points produces an orbit of Zi in the pre-shape space. There
is a unique point at which this orbit comes closest to the
average pre-shape. This point is given by Z∗

i µ̂Zi/(Z
∗

i Zi)
and we call it the aligned pre-shape. The mapping from the
orbit of Zi to Z∗

i µ̂Zi/(Z
∗

i Zi) is really a mapping from the
shape of Zi (since the orbit is the shape) to the pre-shape
space. Under this map, each shape (i.e. orbit in pre-shape)
is uniquely mapped to a single point in the pre-shape. We

call it the embedding map.
Using the embedding map, all database shapes can be

embedded back into pre-shape sphere. A summary of the
procedure is as follows: (1) Convert each database point zi

to its pre-shape Zi = (zi − zT
i 1m)/‖zi − zT

i 1m‖, (2) Calcu-
late the mean pre-shape µ̂ as the eigenvector of the largest
eigenvalue of

P
i
ZiZ

∗

i , where the sum is over all shapes in
the database, (3) Align each pre-shape Zi along its orbit to
the aligned pre-shape, which is Z∗

i µ̂Zi/(Z
∗

i Zi).

4. SHAPE DISTANCE
The above procedure embeds shapes as aligned pre-shapes

in the pre-shape space. Since the pre-shape space itself is
embedded in Cm, we can represent each embedded shape
as a vector from the average pre-shape to the aligned pre-
shape. Thus, if [zi] is the vector representation of the shape
of zi, then

[zi] = Z∗

i µ̂Zi/(Z
∗

i Zi) − µ̂.

If zi and zj are any two sets of points, then the Euclidean

shape distance ds(zi, zj) between them can be taken to be
the Euclidean distance between [zi] and [zj ]:

ds(zi, zj) =
p

([zi] − [zj ])∗([zi] − [zj ]).

The weighted Euclidean shape distance between zi and zj

is

dws(zi, zj) =
p

([zi] − [zj ])∗W ∗W ([zi] − [zj ]),

where W is matrix with positive entries. In particular, if we
set W equal to the diagonal matrix with some entries equal
to 1 and the rest equal to a small positive number (say 0.1),
then the weighted shape distance will mostly compare the
shapes those points that correspond to the weight of 1. This
is a partial shape comparison.

5. INDEXING SHAPES
Because shapes are embedded in a Euclidean space and

the relevant distance between them is a (possibly weighted)
Euclidean distance, standard indexing techniques can be
used to index shape. Specifically we use a kd-tree in Cm

for indexing. The coordinates for the kd-tree are obtained
from the data using Principal Component Analysis (PCA).

6. EXPERIMENTAL RESULTS
In this section, we report the results of applying our in-

dexing technique to the vertebral images in NHANES II. At
the moment, a total of 2812 boundaries are available. Each
boundary is a set of 34 points. A subset of these points rep-
resents osteophyte location at the bottom left corner of the
vertebra (recall figure 1).

A subset of 94 images have been graded by an expert
with respect to osteophyte severity. The grading is from
0 to 5, where “0” represents normal vertebrae without os-
teophyte; “1” indicates sharp protuberance that is barely
visible; “2” means a short osteophyte with length less than
1/2 disk spacing; “3” implies longer and thicker osteophyte
with length greater than 1/2 disk spacing; “4” and “5” are
rare cases of large osteophytes that can bridge or extend to
the next vertebra but have osteophyte that are straight or
bent respectively.

Our first experiment evaluates the utility of the two shape
distance measures proposed in section 4 for this.



6.1 Shape Distance Rank and Osteophyte Grade
Five vertebrae of rank 0 and five vertebrae of rank 3 were

chosen as queries. The rank 0 vertebrae simulate queries
with normal vertebrae and rank 3 vertebrae simulate queries
with osteophytes. For each query, the shape distances be-
tween the query and the 94 expert graded vertebrae were
calculated and the 94 vertebrae ranked according to increas-
ing distance from the query shape.

Suppose q is the query shape and i = 1, · · · , 94 are the
ranked vertebrae. Let g(q) and g(i) refer to the expert
grading of the query and ith ranked vertebrae. We ex-
pect g(i) to be similar to g(q) for low values of i. To mea-
sure this, we calculated the average grade (AG) up to rank

i as 1

i

Pi

k=1
g(k). We expect this number to be close to

the grade of the query g(q). Of course, the grades of the
ranked vertebrae are never exactly the same as the grade
of query vertebra. To evaluate the difference, we calcu-
lated the average positive difference (APD) of the grades

as 1

i

Pi

k=1
(g(k)−g(q))+, where (g(k)−g(q))+ = (g(k)−g(q))

if (g(k) − g(q)) > 0, else (g(k) − g(q))+ = 0. The average
positive difference should tell us the number of more severe
grades up to i. We also calculated the average negative dif-

ference (AND) of the grades as 1

i

Pi

k=1
(g(k)−g(q))−, where

(g(k) − g(q))− = −(g(k) − g(q)) if (g(k) − g(q)) < 0, else
(g(k) − g(q))− = 0. The average negative difference should
tell us the number of less severe grades up to i.

Figure 2 shows the average AG, APD, and AND for the
Euclidean and weighted Euclidean shape distances for grade
0 and 3 queries. The grade 0 results are somewhat special.
Because there is no grade lower than 0, it does not have an
AND. Futher, its AG and APD are identical. Thus we only
plot the AG, which is shown in Figure 2(a) for grade 0. As
the figure shows the AG of the weighted Euclidean distance
is consistently closer to 0 than the AG of the Euclidean dis-
tance showing that the former matches more vertebrae with
grade 0 to the query than the latter. Hence, the weighted
Euclidean shape distance appears to perform better than
the Euclidean shape distance. Figures 2(b) and (c) show
the AG and the APD and AND for the grade 3 retrievals.
From figure 2(b) it is clear the the AG for the weighted
Euclidean distance is consistently closer to 3 than the AG
for the Euclidean distance. The APD and ANG of figure
2(c) show that the weighted Euclidean distance retrieves
marginally more higher grades, but significantly fewer lower
grades than the Euclidean distance. Thus it appears that
the weighted Euclidean distance is more useful as a proxy
for retrieval by osteophyte grade.

Figures 3-4 show typical queries and ranked vertebrae
from these experiments.

6.2 Indexing Performance
Having determined that the weighted Euclidean shape dis-

tance is more suitable for retrieval with respect to osteo-
phyte grading, we evaluated the efficiency of the indexing
scheme for this retrieval. The 2812 shapes were randomly
sampled into sets of size 434, 1089, 1654 and 2812. Each set
was indexed for shape with the algorithm described above.
Every point in the database was used as a query image and
k-nearest neighbor vertebral images were retrieved using the
weighted Euclidean shape distance for k = 10 and 20 neigh-
bors. The average number of node tests per query and the
average number of surviving leaf nodes were recorded. Re-
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(a) AG and APD for Grade 0 Queries
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(b) AG for Grade 3 Queries
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(c) APD and AND for Grade 3 Queries

Figure 2: Shape ranks using different shape dis-

tances vs. osteophyte grade

Figure 3: Query images plus first five ranked im-

ages for Grade 0. Each row shows the query on the

left and ranked images to the right. Top row shows

ranking by the Euclidean metric. Bottom row shows

ranking by weighted Euclidean metric.



Figure 4: Query images plus first five ranked im-

ages for Grade 3. Each row shows the query on the

left and ranked images to the right. Top row shows

ranking by the Euclidean metric. Bottom row shows

ranking by weighted Euclidean metric.

call that the first measures the computational burden of in-
dexing while the second measures the disk access perfor-
mance.

Figures 5 and 6 shows the performance measures as a
function of the database size and k. The performance mea-
sures are expressed as percentages. The percentages should
remain constant for an indexing scheme with linear com-
plexity and should decrease with the size of the database for
sub-linear complexity. The figures suggest that the indexing
procedure is sub-linear in complexity. Thus, the procedure
is effective in indexing shape.
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Figure 5: Average Computa-

tion
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Figure 6: Average Surviving

Leaves

Figure 7 (a)-(b) shows two illustrative similarity queries.
The top left images in 7 (a)-(b) are the query images. The
retrieved images are displayed by rank in raster fashion after
the query image.

7. CONCLUSIONS
We reported a procedure to index boundaries in medical

(a)

(b)

Figure 7: Two Sample Retrievals.

image databases for complete and partial shape similarity
retrieval. The technique embeds shape in pre-shape spaces
in a canonical way. Standard indexing techniques can be
used in the pre-shape space and we demonstrated that this
combination has sub-linear complexity for shape similarity
retrieval.
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