
Combining Static Classifiers and Class Syntax Models for
Logical Entity Recognition in Scanned Historical Documents

Song Mao† Praveer Mansukhani‡ George R. Thoma†

†U.S. National Library of Medicine
Bethesda, Maryland 20894, USA

{smao,gthoma}@mail.nih.gov

‡Computer Science and Engineering Department,
University of Buffalo, Buffalo, NY, 14260, USA

pdm5@buffalo.edu

Abstract

Class syntax can be used to 1) model temporal or loca-
tional evolvement of class labels of feature observation se-
quences, 2) correct classification errors of static classifiers
if feature observations from different classes overlap in fea-
ture space, and 3) eliminate redundant features whose dis-
criminative information is already represented in the class
syntax. In this paper, we describe a novel method that com-
bines static classifiers with class syntax models for super-
vised feature subset selection and classification in unified
algorithms. Posterior class probabilities given feature ob-
servations are first estimated from the output of static clas-
sifiers, and then integrated into a parsing algorithm to find
an optimal class label sequence for the given feature obser-
vation sequence. Finally, both static classifiers and class
syntax models are used to search for an optimal subset of
features. An optimal feature subset, associated static clas-
sifiers, and class syntax models are all learned from train-
ing data. We apply this method to logical entity recognition
in scanned historical U.S. Food and Drug Administration
(FDA) documents containing court case Notices of Judg-
ments (NJs) of different layout styles, and show that the use
of class syntax models not only corrects most classification
errors of static classifiers, but also significantly reduces the
dimensionality of feature observations with negligible im-
pact on classification performance.

1. Introduction and Prior Work

Temporal or locational relationship among objects and
features extracted from the objects usually provide com-
plementary information about their class labels. Temporal
or locational relationship represented by class syntax mod-
els could place strong constraints on allowable class labels
for a given sequence of objects. On the other hand, fea-
tures extracted from objects could provide strong discrimi-

native information for classifying the objects into different
class labels. When class syntax models provide strong con-
straints on allowable class labels for a given sequence of
objects, fewer features may be required to achieve satisfac-
tory classification performance. Otherwise, more features
may have to be used to achieve similar classification per-
formance. Therefore, it is desirable to combine the power
of both machineries for optimal classification and feature
subset selection.

Class syntax models have been used in feature classifica-
tion tasks in many applications. A hybrid SVM/HMM sys-
tem has been used to combine the power of static classifiers
(SVM) and class syntax models (HMM) for speech recog-
nition [6]. However, SVM and HMM are used in separate
steps and errors made in the first step cannot be corrected
in the second step. Zheng et al. [15] proposed a machine
printed text and handwritten text identification method in
noisy images. They used Markov Random Field (MRF) to
represent contextual information to improve feature classi-
fication accuracy. Heuristic rules are used to define MRFs
in their approach.

Numerous algorithms have been proposed for logical la-
beling of documents [9]. Some are based on rules and others
are based on deterministic grammatical models. Machine
learning methods based on stochastic grammars have been
proposed more recently. Shilman and Viola [13] proposed a
document layout analysis method in which document layout
is modeled by a non-generative grammar. Document layout
is extracted by a global search of optimal parse based on a
grammatical cost function. For each distinctive document
class, feature subset and values of parameters are learned
from corresponding training set. Chidlovskii and Fuselier
[4] represent document structures by probabilistic context-
free grammars and used a generalized probabilistic context-
free parsing algorithm to annotate documents in a tree-like
manner. However, grammatical models themselves are not
learned in these methods and need to be manually specified
for each document class. Bikel et al. [2] used a hidden

Markov model to learn to recognize and classify names,
dates, times, and numerical quantities. The use of static
classifiers for classification and feature subset selection are
not addressed in this method. Conditional Random Field [8]
has been proposed to relax independence assumptions and
also solves label bias problem in most other models such
as hidden Markov models and maximum entropy Markov
models (MEMMs). While this model has more expressive
power than HMMs, it has a more complicated parameter
estimation process. We plan to combine CRFs with static
classifiers for classification tasks that require more power-
ful language models than finite state automaton.

In this paper, we describe a method for supervised fea-
ture subset selection and classification using both static
classifiers and class syntax models, and apply it for logi-
cal entity recognition in scanned historical documents. The
novelty of our method is that 1) discriminative power of
static classifiers and class syntax models are integrated in
a unified algorithm for optimal classification, 2) both static
classifiers and class syntax models are also used for opti-
mal feature subset selection in a unified algorithm, and 3)
an optimal feature subset, associated static classifiers, and
class syntax models are all learned from training data. In-
corporating class syntax models into the classification pro-
cess makes some features redundant since their discrimina-
tive information is already represented in the class syntax
models.

The remainder of this paper is organized as follows. In
Section 2, we introduce static feature classifiers and class
syntax models. In Section 3, we present our classification
and feature selection algorithms. We report experimental
results and provide detailed discussion in Section 4. Finally,
we summarize our paper in Section 5.

2. Static Classifiers and Class Syntax Models

While many static classifiers could be used, we use Sup-
port Vector Machines (SVMs) [5]. SVMs achieve bet-
ter classification performance by producing nonlinear class
boundaries in the original feature space by constructing lin-
ear space in a larger and transformed version of the original
feature space.

Formally, given a set of N pairs of training data
{(xi, yi), i = 1, . . . , N} where xi ∈ IRv is a v-dimensional
feature vector in IRv , a v-dimensional Euclidean space, and
yi ∈ {−1, 1} is the class label of xi. Define a hyperplane
in the transformed feature space as f(x) = h(x)Tβ +
β0 = 0 where h(xi) = {h1(xi), h2(xi), . . . , hM (xi)},
i = 1, . . . N and hm(x),m = 1, . . .M is a set of M basis
functions. The goal is to find the hyperplane that produces
the largest margin between training features of class 1 and
-1. If class overlap is allowed in feature space, define a set

of slack variables ξ1, . . . , ξN , the optimization problem is

minββ0
1
2 ||β||

2 + γ
∑N

i=1 ξi

subject to yi(h(xi)Tβ + β0) ≥ 1− ξi, ξi ≥ 0,∀i.

In the transformed feature space, if feature vector h(xi) is
on the wrong side of the margin, it has positive ξi, if it
is on the correct side, ξi = 0. It can be shown that the
solution to the above optimization problem only depends
on the inner product of basis function h(x), i.e., its ker-
nel function K(x,x

′
) = 〈h(x), h(x

′
)〉. We selected a ker-

nel function based on the radial basis functions K(x,x
′
) =

exp(−||x − x
′ ||2/c), where c > 0. Note that γ and c are

kernel parameters and need to be determined in the training
step. The classification rule is G(x) = sign[f(x)]. To ex-
tend two-class classification to multi-class classification, we
use the ”one-against-one” approach in which K(K − 1)/2
two-class classifiers are constructed, where K denotes the
total number of classes. A voting strategy used to select the
class label of each feature vector is as follows: each two-
class classification result is a vote on each feature vector
point, and the one that has the most votes is the class label
of the feature vector.

While SVMs are static classifiers that have strong dis-
criminative power, they cannot model temporal or loca-
tional evolvement of class labels of feature observations.
In hidden Markov models (HMMs), a feature observation
sequence is characterized as a parametric random process.
The class label yt ∈ {1, . . . ,K} of a feature observa-
tion xt ∈ IRv of a feature observation sequence X =
(x1, . . . ,xT) is defined as the state of a system at discrete
time t, 1 ≤ t ≤ T . A discrete time, first order, Markov
chain is used to specify the probabilistic dependency of cur-
rent state at time t and its preceding state at t − 1. In other
words, it is assumed that the class label of the current fea-
ture observation depends only on that of the preceding fea-
ture observation. This has the effect of characterizing class
label sequences as the sentences generated by a stochas-
tic finite state automaton, or equivalently, stochastic regular
grammar. Finally, states in an HMM are hidden and only
feature observations are observable, and they are probabilis-
tic functions of the states (or class label). The Viterbi algo-
rithm [12] can be used to search for the optimal state (class
label) sequence for a given feature observation sequence.

While HMMs place constraints on allowable class la-
bel sequences for a given feature observation sequence,
they have weak discriminative power. In order to combine
the power of the two machines, we first compute posterior
class probabilities given feature observations from outputs
of SVMs, which are then integrated in the Viterbi algorithm.
We will also show that class syntax models can be used to
reduce the dimensionality of feature observations.

3. The Algorithms

In this section, we first describe an algorithm that com-
bines static classifiers with class syntax models for optimal
classification. We then describe an algorithm for selecting
an optimal subset of features.

3.1. Classification Algorithm

Let λ = (A,B, π) be a hidden Markov model (HMM)
where A = {aij = P [yt+1 = j|yt = i], 1 ≤ i, j ≤ K} is
the state transition probability matrix that defines a discrete
time, first order Markov chain, and P [yt+1 = j|yt = i]
is assumed to be independent of time t, B = {bi(xt) =
f(xt|yt = i), 1 ≤ i ≤ K} is a vector of conditional feature
observation probability density functions, and π = {πi =
P [y1 = i], 1 ≤ i ≤ K} is initial state distribution. For
a given sequence of continuous feature observations X =
(x1, . . . ,xT) of length T , we want to predict their discrete
class label sequence y = (y1, . . . yT), where xt ∈ IRv ,
yt ∈ {1, . . . ,K}, t ∈ {1, . . . , T}, K is the total number of
classes, and v is the dimensionality of feature observation.
The optimal class label sequence is found by the Viterbi
algorithm as follows.

Define δt(j) = maxy1,y2,...,yt−1 f(y1, y2, . . . , yt−1, yt =
j,x1,x2, . . . ,xt|λ) be the highest joint probabil-
ity density path ending in state j at time t. Let
ωt(j) = δt(j)/(f(xt)f(xt−1) . . . f(x1)). The steps
of the algorithm is as follows:

• Initialization:

δ1(i) = f(y1 = i,x1|λ)
= P [y1 = i]f(x1|y1 = i) = πibi(x1)

= πi
P [y1 = i|x1]f(x1)

P [y1 = i]

⇒ ω1(i) =
δ1(i)
f(x1)

= πi
P [y1 = i|x1]
P [y1 = i]

,

ψ1(i) = 0, 1 ≤ i ≤ K.

Note that πi is not canceled out with P [y1 = i] here since
πi and the quantity

P [yt = i|xt]
P [yt = i]

are estimated and computed separately as will be shown in
Equation 9 and Equations 5- 8, respectively.

• Recursion:

δt(j) = max
1≤i≤K

[δt−1(i)aij]bj(xt)

= max
1≤i≤K

[δt−1(i)aij]f(xt|yt = j)

= max
1≤i≤K

[δt−1(i)aij]
P [yt = j|xt]f(xt)

P [yt = j]

⇒ δt(j)
f(xt)

= max
1≤i≤K

[δt−1(i)aij]
P [yt = j|xt]
P [yt = j]

⇒ ωt(j) =
δt(j)

f(xt)f(xt−1) . . . f(x1)

= max
1≤i≤K

[
δt−1(i)

f(xt−1) . . . f(x1)
aij]

P [yt = j|xt]
P [yt = j]

= max
1≤i≤K

[ωt−1(i)aij]
P [yt = j|xt]
P [yt = j]

(1)

ψt(j) = arg max
1≤i≤K

[δt−1(i)aij]

= arg max
1≤i≤K

[ωt−1(i)aij],

2 ≤ t ≤ T, 1 ≤ j ≤ K. (2)

• Termination:

P ∗ = max
1≤i≤K

[δT (i)] = max
1≤i≤K

[ωT (i)], (3)

y∗T = arg max
1≤i≤K

[δT (i)] = arg max
1≤i≤K

[ωT (i)]. (4)

• Path (state sequence) backtracking:

y∗t = ψt+1(y∗t+1), t = T − 1, T − 2, . . . , 1.

Now the recursive relationship in terms of δ’s is rewritten
as that of ω’s in Equation (1) so that neither f(xt)’s nor
bj(xt)’s are involved in the computation, therefore we do
not need to specify their explicit probability density func-
tions. The derivations in (1), (2), (3), and (4) rely on the
fact that f(xt)’s are constant with respect to variable i.

We now approximate the stochastic quantity in Equation
(1) by a static one as

P [yt = j|xt]
P [yt = j]

≈ P [y = j|xt]
P [y = j]

, (5)

and the recursion relationship in Equation 1 becomes

ωt(j) = max
1≤i≤K

[ωt−1(i)aij]
P [y = j|xt]
P [y = j]

.

While this quantity loses stochastic property through the ap-
proximation in Equation 5, the parameters πi’s and aij’s in
our algorithm are still used control allowable class label se-
quences for a given input feature observation sequence.

To compute P [y = j|xt], the probability of assigning the
observation xt the class j where j ∈ {1, . . . ,K}, we use

the method described in [14] that employs support vector
machines (SVMs) as the binary classifier. In SVMs binary
classification, the one-against-one approach is used to com-
pute pairwise class probabilities rij ≈ P [y = i|y = i or
j,x] where

rij ≈
1

1 + eαf̂+β
(6)

is an improved implementation of [10]. Parameters α and β
are estimated using training data and their decision values
f̂ obtained in cross validation. The Algorithm 2 described
in [14] is used to compute Pj = P [y = j|x] from rij’s by
solving the following optimization problem

min
P1,...,PK

1
2

K∑
i=1

∑
j:j 6=i

(rjiPi − rijPj)2, (7)

subject to
∑K

i=1 Pi = 1, Pj ≥ 0, 1 ≤ j ≤ K. We see that
by computing P [y = j|x] using the outputs of SVMs, the
discriminative classification power of SVMs is integrated
into our algorithm through approximation in Equation 5.

3.2. Parameter Estimation

Given a training dataset of N sequences of feature ob-
servations {(xn

1 , . . . ,x
n
T (n)), 1 ≤ n ≤ N} and their true

class label sequences {(yn
1 , . . . , y

n
T (n)), 1 ≤ n ≤ N}, we

first estimate α, β and learn decision rule f̂ for comput-
ing rij in Equation 6 using the method in [10]. We then
compute maximum likelihood estimate of P [y = j] using
simple counts as

P̂ [y = j] =
∑N

n=1

∑T (n)
t=1 (yn

t = j)∑N
n=1

∑T (n)
t=1

∑K
i=1(y

n
t = i)

, 1 ≤ j ≤ K.

(8)
Finally, we compute maximum likelihood estimates of ini-
tial probabilities πi’s and state transition probabilities aij’s
using simple counts as

π̂i =
∑N

n=1(y
n
1 = i)∑K

j=1

∑N
n=1(y

n
1 = j)

, (9)

âij =
∑N

n=1

∑T (n)
t=1 (yn

t = j, yn
t−1 = i)∑N

n=1

∑T (n)
s=1 (yn

s = i)
, 1 ≤ i, j ≤ K.

(10)

3.3. Feature Subset Selection Algorithm

Each feature observation is a v-dimensional feature vec-
tor. In the training phase, we search for an optimal subset
of features S∗ of size d < v such that the following error
function is minimized:

S∗ = arg min
|S|=d,S⊆F,d<v

N∑
n=1

T (n)∑
t=1

(y∗nt (S) 6= ȳn
t (S)).

where F is the original set of features, and yn∗
t (S)’s and

ȳn
t (S)’s are optimal class labels found using the classifica-

tion algorithm in Section 3.1 and true class labels from the
training dataset, respectively, for the given feature observa-
tions {xn

1 (S), . . . ,xn
T (n)(S), 1 ≤ n ≤ N} in the training

dataset. Let

ALG({xn
1 (S), . . . ,xn

T (n)(S)}) = {y∗n1 (S), . . . , y∗nT (n)(S)},

where ALG(·) denotes the classification algorithm in Sec-
tion 3.1 and xn

m(S), 1 ≤ n ≤ N, 1 ≤ m ≤ T (n) is a
d dimensional feature observation whose features are de-
fined by S. Note that we now explicitly express feature ob-
servations and their class labels as functions of a feature
set. Many researchers have studied feature subset selection.
Jain and Zongker [7] conducted a survey and comparative
evaluation of feature subset selection methods and identi-
fied the sequential forward floating selection (SFFS) [11]
algorithm as the most effective one. We use this algorithm
to search for an optimal subset of features of size d, where∑N

n=1

∑T (n)
t=1 (y∗nt (S) 6= ȳn

t (S)) is the criterion to be min-
imized. Note that this criterion value combines the power
of both static classifiers (SVMs) and class syntax models
(HMMs).

3.4. Complexity Analysis

Since we are concerned about performance we have in-
vestigated the complexity of our method. The classifica-
tion algorithm described in Section 3.1 requires an order
of K2T computations without considering the computation
complexity for computing P [y = j|xt]. The complexity for
computing P [y = j|xt], j = 1, . . . ,K is O(KI) where I
is the total number of iterations need to reach the solution
to Equation 7 in Algorithm 2 described in [14]. I is con-
trolled by a stop criterion in the algorithm. Therefore, the
computational complexity for computing P [y = j|xt], y =
1, . . .K, t = 1, . . . , T is O(KIT). Since SVM computa-
tions are only used to compute rij and are one-time com-
putations, the total computations are K(K − 1). Therefore,
the algorithm complexity isO((K2+KI) ·T +K2−K) =
O((K2 +KI) · T).

4. Experiments
4.1. Dataset

We apply our algorithm to logical entity recognition
in scanned historical U.S. Food and Drug Administration
(FDA) documents called Notices of Judgment (NJs) which
detail court cases concerning violations related to food,
drug, and cosmetics by companies in the early twentieth
century. Each NJ 1) is printed in small and old-styled fonts,
and have different layout styles, 2) could start or end any-
where in a document page, and 3) could occupy a partial

(a) (b)

(c1) (c2)
Figure 1. Notices of Judgment in three different styles. Note that an NJ occupies two pages in style (c). Some logical entities are associated
with each NJ. Others with a set of NJs such as law (act) name, and NJ category in style (a), bureau name, and general date in style (b).
The logical entity that is associated with a document page is the page number. Logical entities associated with each NJ include NJ header
and NJ body in style (a), NJ header, NJ body, judge name and title, place and date in style (b), and NJ evidence number, NJ issue date,
department, office, NJ number, law (act) information, NJ abstract, NJ title, NJ body, footnote, judge name, judge title and affiliation, place
and date in style (c).

page or multiple pages. NJs showing three layout styles and
logical entities of interest appear in Figure 1. The number
of logical entities in each NJ increases from style (a) to (c).

For each layout style, we randomly select a set of docu-
ment pages as the training dataset. In our experiments, we
choose the first 30 pages as the training dataset for layout
style (b), and (c). Since there are two variations in layout
style (a), we choose the first 30 pages from the first variation
and the first 15 pages from the second variation, and con-

sider these 45 pages as the training dataset. The remaining
pages in each layout style are considered as the test dataset
for that style. Textlines are basic classification units and
there are a total of 26,282 textlines in 955 NJs from 518
pages in our dataset as summarized in Table 1.

4.2. Textline Segmentation and Feature Extraction

While numerous algorithms can be used to perform page
segmentation, the zoning results and character bounding

Table 1. Training and test datasets in our experiments.
Layout Dataset Training set Test set
style Pages;NJs;Textlines Pages;NJs;Textlines Pages;NJs;Textlines
(a) 234;648;10,947 45;94;1,423 189;554;9,524
(b) 225;269;13,495 30;28;1,849 195;241;11,646
(c) 59;38;1,840 30;15;929 29;23;911

box information generated by the FineReader OCR engine
8.0 [1] are used in our experiment to obtain textline seg-
mentation from scanned document pages. Figure 1 shows
examples of such textline segmentation results in the vari-
ous layout styles. They are ordered from left to right and
top to bottom to form a one-dimensional string of textlines.
The fourteen features extracted from each textline are as fol-
lows: 1: average ratio of black pixels in character bounding
boxes in the textline; 2-5: mean of character width, height,
aspect ratio, and area; 6-9: variance of character width,
height, aspect ratio, and area; 10: total number of letters
and digits/total number of characters; 11: total number of
letters/total number of letters and digits; 12: total number
of capital letters/total number of letters; 13-14: indentation
(where 00 denotes center line, 10 denotes left indented line,
11 denotes full line (i.e. those textlines occupying the full
range of a text column), and 01 denotes right indented line).
Thus the 13th feature value could indicate if the line touches
the left margin of a text column, and the 14th feature value
could indicate if the line touches the right margin of a text
column.

4.3. Training Results

Textline classification accuracy is the performance met-
ric used in both the training and test phases of our experi-
ments. In the training phase, we learn a class syntax model
(HMMs), an optimal feature subset, and associated static
classifiers (SVMs) for each layout style, all from the train-
ing dataset as described in Sections 3.2 and 3.3. To search
for an optimal feature subset of size 1 ≤ d ≤ v = 14, we
first train an SVM as follows: do a grid search on its tunable
parameters γ and c and find the one set that gives the high-
est five-fold cross validation accuracy, which is then used
to train the SVM on the whole training set to get the final
SVM classifier. The LIBSVM library [3] is used to train
SVM classifiers and compute class posterior probabilities.
The posterior probabilities are used in our classification al-
gorithm to obtain final classification accuracy, which serves
as the criterion value for the SFFS [11] algorithm. Finally,
the SFFS algorithm is used to find an optimal feature subset
of size d that maximizes this criterion value. SVM training
and feature subset selection using SFFS are relatively slow,
but they are done only once and results are saved. Table 2 to
4 show the training results and Figure 2 shows class syntax
models learned for the three layout styles.

Table 2. Training results for NJs of layout (a).
Optimal feature subset SVM Algorithm SVM Corrected Algorithm % Error

accuracy accuracy errors by HMM errors reduction
11 88.83% 94.38% 159 79 80 49.68%
3,7 96.77% 98.95% 46 31 15 67.39%
3, 7, 11 98.24% 99.16% 25 13 12 52.00%
3, 7, 11, 13 98.52% 98.95% 21 6 15 28.57%
3, 4, 7, 9, 11 99.16% 99.65% 12 7 5 58.33%
3,7,8,11,12,13 99.16% 99.51% 12 5 7 41.67%
2,3,6,7,8,11,13 99.16% 99.58% 12 6 6 50.00%
1,2,3,7,8,11,12,13 99.09% 99.37% 13 4 9 30.77%
1,3,5,6,7,8,11,12,13 99.23% 99.58% 11 5 6 45.45%
1,3,5,6,7,8,9,11,12,13 99.23% 99.58% 11 5 6 45.45%
1,2,3,4,6,7,8,9,11,12,13 99.23% 99.58% 11 5 6 45.45%
1,2,3,5,6,7,8,9,10,11,12,13 99.30% 99.44% 10 2 8 20.00%
1,2,3,4,5,6,7,8,9,10,11,12,13 99.51% 99.65% 7 2 5 28.57%
all 99.65% 99.86% 5 3 2 60.00%

Table 3. Training results for NJs of layout (b).
Optimal feature subset SVM Algorithm SVM Corrected Algorithm % Error

accuracy accuracy errors by HMM errors reduction
3 93.35% 98.92% 123 103 20 83.74%
3,12 97.13% 99.51% 53 44 9 83.02%
3, 11, 12 99.13% 99.89% 16 14 2 87.50%
3, 7, 11, 12 99.41% 99.78% 11 7 4 63.64%
3, 7, 11, 12, 14 99.78% 100% 4 4 0 100.00%
3,7,10,11,12,14 99.73% 99.89% 5 3 2 60.00%
3,5,7,10,11,12,14 99.84% 100% 3 3 0 100.00%
3,5,6,7,10,11,12,14 99.68% 100% 6 6 0 100.00%
1,2,3,6,7,10,11,12,14 99.89% 100% 2 2 0 100.00%
1,2,3,5,6,7,10,11,12,14 99.78% 100% 4 4 0 100.00%
1,2,3,4,5,6,9,10,11,12,14 99.73% 100% 5 5 0 100.00%
1,2,4,5,6,7,9,10,11,12,13,14 99.89% 100% 2 2 0 100.00%
1,2,3,4,5,6,7,8,9,10,11,12,13 99.84% 100% 3 3 0 100.00%
all 99.84% 99.89% 3 1 2 33.33%

Table 4. Training results for NJs of layout (c).
Optimal feature subset SVM Algorithm SVM Corrected Algorithm % Error

accuracy accuracy errors by HMM errors reduction
3 89.67% 99.57% 96 92 4 95.83%
3,12 97.74% 100% 21 21 0 100.00%
5, 7, 11 99.14% 99.78% 8 6 2 75.00%
3, 10, 12, 13 99.78% 100% 2 2 0 100.00%
2, 3, 7, 11, 12 99.78% 100% 2 2 0 100.00%
3,5,7, 9,11,12 99.57% 100% 4 4 0 100.00%
2,3,7,8,10,12,13 99.89% 100% 1 1 0 100.00%
1,3,4,7,10,11,12,13 100% 100% 0 0 0 0.00%
1,4,5,7,8,9,11,12,14 100% 100% 0 0 0 0.00%
1,3,4,5,6,7,9,11,12,13 100% 100% 0 0 0 0.00%
1,3,4,5,6,7,9,10,11,12,13 100% 100% 0 0 0 0.00%
1,3,4,5,6,7,8,9,10,11,12,13 100% 100% 0 0 0 0.00%
1,2,3,4,5,6,7,8,9,10,11,12,13 100% 100% 0 0 0 0.00%
all 100% 100% 0 0 0 0.00%

4.4. Test Results

Our algorithm is tested on the test dataset using optimal
feature subsets found in the training phase. Each textline is
classified into one of logical entities shown in Figure 1. In
order to compare the effectiveness of class syntax models to
correct classification errors made by static classifiers on NJ
body and NJ non-body textlines, we sum up the numbers for
textlines classified as one of NJ non-body types such as NJ
issue date, NJ header, page number, etc. We summarize the
test results in Table 5. We see that our algorithm achieves
a 98.06% classification accuracy using only five features
(3,4,7,9,11) for layout style (a), achieved a 99.67% clas-
sification accuracy using only five features (3,7,11,12,14)
for layout style (b), and achieved a 99.34% classification
accuracy using only two features (3, 12) for layout style
(c). Most textlines in our dataset are NJ body textlines,
and we see most of them are correctly classified by SVMs
alone simply because the data used for training the SVMs is
extensive. We also see class syntax models (HMMs) are

(a) (b)

(c)
Figure 2. A class syntax model is learned for each layout style.

Table 5. Test results.
Layout Optimal feature Textlines SVM Algorithm SVM Corrected Algorithm % Error
style subset accuracy accuracy errors by HMM errors reduction
(a) 3, 4, 7, 9, 11 Total: 9,524 96.26% 98.06% 356 171 185 48.03%

NJ body: 7,798 99.36% 99.58% 50 17 33 34.00%
NJ non-body: 1,726 82.27% 91.19% 306 154 152 50.33%

(b) 3, 7, 11, 12, 14 Total: 11,646 98.05% 99.67% 227 189 38 83.26%
NJ body: 10,179 99.47% 99.65% 54 18 36 33.33%
NJ non-body:1,467 88.21% 99.86% 173 171 2 98.84%

(c) 3, 12 Total: 911 93.85% 99.34% 56 50 6 89.29%
NJ body:693 98.85% 100% 8 8 0 100.00%
NJ non-body:218 77.98% 97.25% 48 42 6 87.5%

most effective to correct classification errors on NJ non-
body textlines in layout style (a) and (b). SVMs alone show
low classification performance on NJ non-body textlines
since the size of the training data is relatively small and fea-
ture observations from different logical categories overlaps
in feature space. Class syntax models place constraints on
allowable class sequence for NJ non-body textlines. The
strength of such constraints seems to be stronger for style
(c) and only two features are needed to achieve an optimal
training classification accuracy of 99.34%.

In Figure 3, we compare classification performance of
SVMs and our algorithm on NJ body and NJ non-body
textlines using optimal feature subsets of all sizes learned in
the training phase. We see that 1) SVMs require many more
features to achieve similar performance to that of our algo-
rithm, 2) for all layout styles, the classification performance
of our algorithm quickly converges with an optimal feature
subset of only a few features, and 3) the shapes of the over-
all curves depend on those for NJ non-body textlines, for
which class syntax models (HMMs) are most effective to
correct misclassification errors.

5. Summary and Future Work
We have described a method that combines static classi-

fiers (SVMs) and class syntax models (HMMs) for optimal

classification and feature subset selection. This technique
was applied to logical entity recognition in scanned histori-
cal documents. We showed in our experiments that the use
of class syntax models not only corrects most classification
errors created by static classifiers, but also significantly re-
duces the dimensionality of feature observations with neg-
ligible impact on classification performance. Future work
includes studying the relationship between the complexity
of class syntax models and its effect on dimensionality re-
duction of feature observations, and use of more powerful
class syntax models such as conditional random fields.

References
[1] ABBYY FineReader OCR 8.0, 2006.
[2] D. M. Bikel, R. Schwartz, and R. M. Weischedel. An al-

gorithm that learns what’s in a name. Machine Learning,
34:211–231, 1999.

[3] C. C. Chang and C. J. Lin. LIBSVM: a library for support
vector machines, 2001.

[4] B. Chidlovskii and J. Fuselier. A probabilistic learning
method for XML annotation of documents. In International
Joint Conferences on Artificial Intelligence, pages 1016–
1021, Edinburgh, Scotland, July 2005.

[5] C. Cortes and V. Vapnik. Support-vecor network. Machine
Learning, 20:273–297, 1995.

(a)

(b)

(c)
Figure 3. Classification performance of static classifiers (SVMs) and our algorithm on three layout styles. The vertical distance between
the two curves represents the number of errors corrected by our algorithm using class syntax model HMMs. Note that the scales of plots
are different and the number of classification errors on NJ body textlines are much less than that on NJ non-body textlines. Our algorithm
achieves much greater reduction of classification errors on NJ non-body textlines than on NJ body textlines.

[6] A. Ganapathiraju, J. Hamaker, and J. Picone. Hybrid
SVM/HMM architectures for speech recognition. In 2000
Speech Transcription Workshop, College Park, Maryland,
May 2000.

[7] A. Jain and D. Zongker. Feature selection: Evaluation, ap-
plication, and small sample performance. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19:153–158,
1997.

[8] J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and label-
ing sequence data. In Proceedings of International Confer-
ence on Machine Learning, pages 282–289, Williams Col-
lege, MA, June 2001.

[9] S. Mao, A. Rosenfeld, and T. Kanungo. Document structure
analysis: A survey. In Proceedings of SPIE Conference on
Document Recognition, pages 197–207, San Jose, CA, Jan-
uary 2003.

[10] J. C. Platt. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. In A. J.

Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, ed-
itors, Advances in Large Margin Classifiers, pages 61–74.
MIT Press, Cambridge, MA, 2000.

[11] P. Pudil, J. Novovicova, and J. Kittler. Floating search
methods in feature selection. Pattern Recognition Letters,
15:1119–1125, 1994.

[12] L. Rabiner and B. H. Juang. Fundamentals of Speech recog-
nition. Prentice Hall, Englewood Cliffs, NJ, 1993.

[13] M. Shilman, P. Liang, and P. Viola. Learning non-generative
grammatical models for document analysis. In Proceed-
ings of IEEE International Conference on Computer Vision,
pages 962–969, Beijing, China, October 2005.

[14] T. F. Wu, C. J. Lin, and R. C. Weng. Probability estimates
for multi-class classification by pairwise coupling. Journal
of Machine Learning Research, 5:975–1005, 2004.

[15] Y. Zheng, H. Li, and D. Doermann. Machine printed text and
handwriting identification in noisy document images. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
26:337–353, 2004.

