
Simultaneous Layout Style and Logical Entity Recognition
in a Heterogeneous Collection of Documents

Siyuan Chen, Song Mao, and George R. Thoma
U.S. National Library of Medicine

Bethesda, MD 20894, USA

Abstract

Logical entity recognition in heterogeneous collections
of document page images remains a challenging problem
since the performance of traditional supervised methods de-
grade dramatically in case of many distinct layout styles. In
this paper we present an unsupervised method where lay-
out style information is explicitly used in both training and
recognition phases. We represent the layout style, local fea-
tures, and logical labels of physical regions of a document
compactly by an ordered labeled X-Y tree. Style dissimilar-
ity of two document pages is represented by the distance of
their representing trees. During the training phase, docu-
ment pages with true logical labels in training set are clas-
sified into distinct layout styles by unsupervised clustering.
During the recognition phase, the layout style and logical
entities of an input document are recognized simultaneous
by matching the input tree to the trees in closest-matched
layout style cluster, of training set. The experimental re-
sults show that our algorithm is robust to balanced and un-
balanced style cluster sizes, zone over-segmentation, zone
length variation, and variation in tree representations of the
same layout style.

1. Introduction
Logical structure analysis is often an important goal of

a document image analysis system. Recognized logical en-
tities are essential for searching, accessing, indexing, and
retrieving the information contained in document images.

Numerous algorithms have been proposed for logical
structure analysis. Many methods are based on heuristic
rules [6, 4, 11, 10]. Since documents could have differ-
ent layout styles, a different set of rules will have to be
manually created for each such layout style. If the num-
ber of distinct layout styles is large, the number of rules that
need to be manually created also become large, thereby de-
creasing the recognition speed. Some researchers represent
heuristic rules by deterministic or stochastic formal gram-

mars [7, 12], and use various parsing techniques to recog-
nize logical entities. For each distinct layout style, gram-
matical rules have to be manually created as well in these
methods.

Graph models such as the tree have been used to better
represent the two-dimensional arrangement of logical enti-
ties on a document page image. Krishnamoorthy et al. [7]
represent the logical structure of a document page by an X-
Y tree and use block grammars and associated parsing algo-
rithm for logical entity recognition. Dengel and Dubiel [1]
use Geometric Tree or GTree and associated parsing algo-
rithm to represent and recognize logical structure of letters
in a learning framework.

Liang et al. [8] represent the layout of document pages
by a fully connected attributed graph and performed page
classification and logical labeling at the same time. Since
each node in the model denotes a segmented zone and each
edge between two nodes represent spatial relationship be-
tween the two zones on a document page, the model cannot
represent hierarchical nesting relationship among document
regions and is also sensitive to variation in distance between
two zones and zone over-segmentation problem. The def-
inition of a match cost makes the search for the minimal
cost match of two graph models computationally expensive.
In their experiments, layout models for different document
classes are manually built, and most data are used in both
the training and evaluation phases of their algorithm. More-
over, the forty pages that are only used in the evaluation
phase are used to evaluate the performance of logical label-
ing, not that of page classification.

While our method is conceptually similar to this method,
it differs significantly in the layout model representation,
model learning in the training phase, and experimental ver-
ification. We will show in our experimental results that our
algorithm is robust to balanced and unbalanced style clus-
ter sizes in training dataset, variation in distance between
zones, zone over-segmentation problem, and zone length
variation of same logical entities.

This paper is organized as follows. In Section 2, we rep-
resent the layout style, local features, and logical labels of

physical regions of a document page by an ordered labeled
X-Y tree. In Section 3, the detailed logical entity recogni-
tion training and recognition algorithms are given. In Sec-
tion 4, we present experimental results and discussions. Fi-
nally, we summarize our paper in Section 5.

2. Document Page Representation: Or-
dered Labeled X-Y Tree

It is essential to be able to represent a document page and
its associated structural and feature information in a uni-
fied and compact form so that rigorous computations can be
performed on them. We use an ordered labeled X-Y tree
[7] to compactly represent the layout style, local features,
and logical labels of physical regions of a document page
image that has the Manhattan layout. Each node in the tree
represents a physical region or a zone and the root node rep-
resents the entire document page. Each leaf node represents
a segmented zone and each internal node represents a group
of segmented zones in a document page image. An internal
node at current tree level is projected into multiple nodes on
either the X or Y axis at the next tree level. Hierarchical
nesting relationship among different logical entities is rep-
resented by parent-child relationship in the tree. The child
nodes of a parent node are read from left to right. Each node
is also associated with a set of local features of the corre-
sponding physical region. Our basic assumption is that two
document page images should have similar ordered labeled
X-Y tree representations if they have similar layout styles,
local features and logical labels of corresponding physical
regions.

We use a tree-matching algorithm [13] to compute an
edit distance between two document page images. Note that
if two documents have similar layout style but their logi-
cal entities have very different local feature values and are
placed at different locations the edit distance between the
two can still be large. Figure 1 shows a document page
and its corresponding ordered labeled X-Y tree representa-
tions. This layout style information represented by the or-
dered labeled X-Y tree will be used explicitly in both train-
ing and recognition phases of our algorithm as described in
Section 3.

Each node in an ordered labeled tree is associated with
a label, which is represented by a set of features extracted
from the corresponding document region. Using OCR en-
gine FineReader 8.0 we extracted raw OCR features which
include ASCII characters, font features and the bounding
box coordinates of zones and characters. For each node, we
extracted the following features: average font size, level of
the node in the tree, direction of projection profile of the
node, the X coordinate of the vertical center line of the cor-
responding zone bounding box, the distance to its nearest
sibling in Y direction, the ratio of the number of digits to

(a) (b)

Figure 1. A document page (a) and its ordered
labeled X-Y tree representation (b). Each leaf
node is associated with a segmented zone on
the page (a) and a set of local features (which
are not shown here) extracted from the zone.

the number of characters, the ratio of the number of capital
letters to the number of characters, the ratio of the number
of letters and digits to the number of characters, the ratio
of the number of letters to the number of letters and digits,
the ratio of the number of capital letters to the number of
letters.

3. Algorithms
3.1. Tree Matching by Dynamic Programming

In Zhang’s paper [13], a dynamic programming algo-
rithm was proposed to generate an optimal matching be-
tween two ordered trees in terms of minimum edit dis-
tance. Three types of edit operations: relabeling, dele-
tion and insertion are used to describe the sequence of
operations to transform the data tree TD into the ref-
erence tree TR. The mapping is isomorphic and sib-
ling and ancestor orders are preserved. The algorithm
runs in O(|TR| × |TD| × min(depth(TR), leaves(TR)) ×
min(depth(TD), leaves(TD))) time, where |TR| denotes
the total number of nodes in tree TR.

3.1.1 Formulation of Edit Distance Function

Let the cost function of edit operation be γ(u → v), where
u is either a node in TD or empty node λ, similarly v is ei-
ther a node in TR or λ. Note that u and v cannot be an empty
node at the same time, u → λ denotes deletion, and λ → v
denotes insertion. Denote D(F1, F2) as the edit distance
between the subforest F1 in TD and the subforest F2 in TR.
Let T (r1) and T (r2) be their rightmost subtrees rooted at
nodes r1 and r2 respectively and let Φ be the empty forest,
the dynamic programming process is:

• Initialization:

D(Φ,Φ) = 0,
D(F1,Φ) = D(F1 − r1,Φ) + γ(r1 → λ),
D(Φ, F2) = D(Φ, F2 − r2) + γ(λ → r2).

• Iteration:

D(F1, F2) = min

D(F1 − r1, F2) + γ(r1 → λ),
D(F1, F2 − r2) + γ(λ → r2),
D(F1 − T (r1), F2 − T (r2))+
D(T (r1), T (r2)).

3.1.2 Tree Node Mappings

We assign logical labels of nodes in the reference tree TR to
the nodes in the data tree TD by tree node mapping. Map-
ping is the graphical specification of the edit operation ap-
plied to each node of the data tree. The optimal mappings
M correspond to the sequence of edit operations that gives
minimum edit distance D(TD, TR). Without confusion, for
any pair (u → v) ∈ M , we denote M(u) = v. However we
are only interested in the mappings related to the leaf nodes
in TD, each of which corresponds to a single zone in a doc-
ument page image. For each node in the data tree TD there
are two possible operations: deletion or relabeling. Since
we aim to find an optimal mapping from one leaf node in
TD to another leaf node in TR, the deletion should be re-
placed by an appropriate relabeling, i.e., for each (u → λ)
in M , we should replace it by u → vo, where vo is the target
node in TR. And it is natural to map the deleted leaf node u
to an appropriate undeleted leaf node u′ in TD and replace
(u → λ) by (u → M(u′)). We use a two step procedure to
replace the deletion mappings.

• Step 1:
for each (u → v) ∈ M

if l(u) = u and v = λ, then
v = M(u′), such that
u′ = arg min

w∈TD,l(w)=w
{γ(u → w)}.

endif
endfor

• Step 2:
for each (u → v) ∈ M

if l(u) = u, then
v = arg min

w∈des(v)
{γ(u → w)}.

endif
endfor

Where l(w) denotes the leftmost descendant of node w
and des(w) denotes the descendant leaf nodes of node w.
Thus we have a leaf node to leaf node mapping for each
leaf node in TD but not the reverse.

3.1.3 Edit Cost Functions

The range of possible mappings M is constrained by the
sibling and ancestor order in the two trees. On the other
hand, the cost to delete, insert or relabel a tree node should
depend on the structural and local features associated with
each tree node. Among them the cost of deletion should
be symmetric to the cost of insertion, the cost of relabeling
should be symmetric about its two paramters. To be spe-
cific, we define:

γ(u → v) = γ(v → u) =

√√√√ 10∑
i=1

(fu
i − fv

i)2

s2
i

. (1)

So the edit cost to relabel u to v is equal to the Euclidean
distance between normalized feature vectors fu and fv . Let
s2

i be the sample variance of ith element of feature vector.
We normalize the feature vector by its sample variance to
eliminate the unbalanced value ranges of different feature
elements.

γ(u → λ) = γ(λ → u) =

√
10∑

i=1,i 6=7

(fu
i −fu′

i)
2

s2
i

, iffu
3 = 0,√

10∑
i=1,i 6=6

(fu
i −fu′

i)
2

s2
i

, iffu
3 = 1.

(2)
Where u′ is the left sibling of u if it exists, or null fea-

ture vector otherwise. We use the f6 or f7 to measure the
spatial distance between u and u′ according to the projec-
tion direction of their level. Binary feature f3 indicates the
projection direction. The definition of Equation 2 is consis-
tent with Equation 1. Additionally we measure the cost to
delete or insert a node according to its edit distance to its
sibling node so that a locally unique node may survive the
matching process.

3.2. Layout Style Classification by Unsuper-
vised Clustering

We use the K-medoids [5] algorithm to automatically
cluster the training samples into distinct layout styles. A
set of tree edit cost functions are defined based on Karl Per-
son distance between two multivariate feature observations
in [9]. This method is an unsupervised method and involves
no training or manual selection of algorithm parameters. In
this paper, we use more features in tree edit cost functions
to better discriminate document pages of distinct styles.

4. Experiments
4.1. Preprocessing

We collected the first pages of 138 individual articles.
These articles are from 9 different journals that have 9 dis-

tinct layout styles (as shown in Figure 2). In the prepro-
cessing phase, a combinatorial OCR and zone segmentation
module [2] was used to generate zones for each page. Local
OCR features associated with each zone were extracted. We
generate groundtruth for our dataset by manually assigning
each zone with a logical label. After zone segmentation we
built an ordered labeled X-Y tree for each document page
and separated the trees into 3 parts: training set, cross val-
idation set and test set that contain 51, 18 and 69 trees re-
spectively. Table 1 shows the sizes of different datasets in
our experiment.

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 2. Nine distinct layout styles.

4.2. Training Phase
There are two main steps in the training phase: (1) un-

supervised clustering the training data set into K distinct
layout styles; (2) a cross validation procedure to simulta-
neously choose the optimal size of compressed training set,
which we denote as Q, and the number of nearest neigh-
bor trees to a test tree (to be used in the recognition phase),
which we denote as R.

First of all, we applied the K-medoids algorithm to the
training set so that we obtained K = 9 clusters of trees
[9]. Secondly, we compressed each cluster by choosing
the Q nearest trees to the corresponding centroid tree and
eliminating the others. We did this to prevent erroneously
clustered trees. By global searching we simultaneously
chose the optimal Q and R such that the proposed algo-

rithm achieves the highest accuracy to the cross validation
set. The optimal value of Q and R obtained for the training
set are 5 and 1, respectively.

Table 1. Number of document pages in train-
ing, cross validation, and test datasets of
each layout style.

Layout Style 1 2 3 4 5 6 7 8 9
Training 4 5 4 9 8 6 7 3 5
Cross Validation 1 2 1 3 3 2 3 1 2
Test 4 8 4 12 11 8 10 5 7

4.3. Recognition Phase
In the recognition phase, each test tree is classified into

the layout cluster whose centroid tree has a minimum edit
distance to the test tree. Consequently, we match the test
tree to the Q trees found in the training phase for this clus-
ter, and from the Q trees we choose the R trees that are
nearest to the test tree. Then the selected R trees cast votes
on the logical labels of leaf nodes in the test tree accord-
ing to the obtained tree node mappings as described in Sec-
tion 3.1.2. Each leaf node is labeled as the logical entity
that has the maximum number of votes. Let us denote L(u)
as the logical label of zone u, Mr(u) as the correspond-
ing mapped zone in the rth tree, and the designed code
book of logical label as Σ. The process to obtain the log-
ical label of zone u in the test tree can be expressed as:
L(u) = arg max

j∈Σ
‖{r|L (Mr(u)) = j, 1 ≤ r ≤ R}‖ .

4.4. Results
The results of experiment show that the overall accuracy

of logical entity recognition is 93.40% over the 1,015 test
zones. And the recognition accuracies of individual types
of logical entity are evaluated as well. See Table 2.

Table 2. Recognition Accuracies for Different
Logical Entities

Title Authors Affiliations Abstract
94.81% 92.96% 95.96% 98.82%
Section Running Header Footnote Page Number
86.56% 98.05% 88.37% 95.45%

In addition, we set up a balanced training data set of 35
pages. The small balanced training set consists of 4 pages of
style 1,2,3,4,5,6,7,9 respectively and 3 pages of style 8. All
of them were randomly chosen from the training set in Ta-
ble 1. The recognition rate using the small balanced training
set is 92.31%.

We compare the performance of our algorithm with that
of Support Vector Machines (SVMs) without considering
layout style information. We combine the training set and
cross validation set in Table 1 into one training set and use
the local font features of the zones to train the support vector
classifier. We chose the radial basis function as the kernel

function and selected the penalty parameter C and the ker-
nel coefficient γ by a 5-fold cross validation in the training
set. The optimal C and γ are 32 and 8 respectively. The
trained classifier is used on the test set in Table 1 and aver-
age logical entity recognition accuracy is only 79.31%. See
[3] for the details of this algorithm.

4.5. Error Analysis
Error distributions in individual logical entity types are

listed in Table 3. The cell element (i, j) of this table records
the ratio of errors when logical entity i was recognized as
logical entity j over all the errors of logical entity i. From
the table we can see that the segmented zones are prone to
be misclassified as the categories that are close to it physi-
cally, such as “title” to “authors”, “authors” to “affiliations”,
”affiliations” to ”abstract”, which is consistent with tree
matching algorithm. We also see that most errors are due
to three factors: (1) zone segmentation erroneously merges
different logical entities or missed part of a logical entity;
(2) horizontal gaps between paragraphs in different columns
are accidentally aligned horizontally and are considered as
a single horizontal gap, which results in an incorrect tree be-
ing built; and (3) floating logical entities, such as footnote
and page number, are located at different sides in odd and
even pages.

Table 3. Error analysis
Logical label 1 2 3 4 5 6 7 8

1 / 100% 0 0 0 0 0 0
2 20% / 80% 0 0 0 0 0
3 0 10% / 50% 20% 0 20% 0
4 0 0 60% / 40% 0 0 0
5 0 2% 21% 72% / 0 5% 0
6 100% 0 0 0 0 / 0 0
7 0 0 17% 0 50% 0 / 33%
8 0 0 0 0 0 0 100% /

1:Title, 2:Authors, 3:Affiliations, 4:Abstract,
5:Section, 6:Running Header, 7:Footnote, 8:Page number.

5. Conclusion and Future Work
In this paper we have presented a novel logical entity

recognition algorithm based on ordered labeled X-Y tree
matching and unsupervised layout style recognition. The
overall accuracy is high as 93.40% when using the unbal-
anced training set and 92.31% when using the balanced but
smaller training set. These figures are much higher than
the accuracy of SVM using the same data set. The exper-
imental result proved the efficiency of selected local font
features and the robustness of X-Y tree representation. The
layout style and logical entities are recognized simultane-
ously with satisfactory accuracies.

Apparently there is still space to enhance this algorithm.
Firstly erroneously clustered layout styles can be reduced
if X-Y tree representation is adjusted to avoid the three
clusters of errors discussed in Section 4.5. Secondly
parsing techniques can be combined to improve the logical

entity recognition. In our future work we will generalize
the algorithm to more categories of logical labels and
evaluate it on general article document collection like UW
Document Image Database III.

Acknowledgement
This research was supported by the Intramural Research
Program of the National Library of Medicine, National In-
stitutes of Health.

References
[1] A. Dengel and F. Dubiel. Computer understanding of doc-

ument structure. International Journal of Imaging Systems
and Technology, 7:271–278, 1996.

[2] S. E. Hauser, D. X. Le, and G. R. Thoma. Automated zone
correction in bitmapped document images. In The Interna-
tional Society for Optical Engineering Document Recogni-
tion, pages 248–258, San Jose, CA, January 2000.

[3] C. Hsu, C. Chang, and C. Lin. A practical guide to support
vector classification.

[4] Y. Ishitani. Logical structure analysis of document images
based on emergent computation. In Proceedings of Interna-
tional Conference on Document Analysis and Recognition,
pages 189–192, Bangalore, India, September 1999.

[5] L. Kaufman and P. Rousseeuw. Finding groups in data: An
introduction to cluster analysis. Wiley, New York City, New
York, 1990.

[6] J. Kim, D. X. Le, and G. R. Thoma. Automated labeling in
document images. In Proceedings of SPIE Conference on
Document Recognition and Retrieval VIII, pages 111–122,
San Jose, CA, January 2001.

[7] M. Krishnamoorthy, G. Nagy, S. Seth, and M. Viswanathan.
Syntactic segmentation and labeling of digitized pages from
technical journals. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15:737–747, 1993.

[8] J. Liang, D. Doermann, M. Ma, and J. Guo. Page classifi-
cation through logical labeling. In Proceedings of Interna-
tional Conference on Pattern Recognition, pages 477–480,
Quebec, Canada, August 2002.

[9] S. Mao, L. Nie, and G. R. Thoma. Unsupervised style classi-
fication of document page images. pages 510–513, Genova,
Italy, September 2005.

[10] D. Niyogi and S. N. Srihari. Knowledge-based derivation of
document logical structure. In Proceedings of International
Conference on Document Analysis and Recognition, pages
472–475, Montreal, Canada, August 1995.

[11] K. Summers. Near-wordless document structure classifica-
tion. In Proceedings of International Conference on Docu-
ment Analysis and Recognition, pages 462–465, Montreal,
Canada, August 1995.

[12] Y. Tateisi and N. Itoh. Using stochastic syntactic analysis
for extracting a logical structure from a document image. In
Proceedings of International Conference on Pattern Recog-
nition, pages 391–394, Jerusalem, Israel, October 1994.

[13] K. Zhang, D. Shasha, and J. T. L. Wang. Approximate
tree matching in the presence of variable length don’t cares.
Journal of Algorithms, 26:33–66, 1994.

