
IJDAR
DOI 10.1007/s10032-009-0105-9

ORIGINAL PAPER

Locating and parsing bibliographic references in HTML medical
articles

Jie Zou · Daniel Le · George R. Thoma

Received: 1 April 2009 / Revised: 20 October 2009 / Accepted: 1 December 2009
© Springer-Verlag 2009

Abstract The set of references that typically appear toward
the end of journal articles is sometimes, though not always,
a field in bibliographic (citation) databases. But even if ref-
erences do not constitute such a field, they can be useful as a
preprocessing step in the automated extraction of other bib-
liographic data from articles, as well as in computer-assisted
indexing of articles. Automation in data extraction and index-
ing to minimize human labor is key to the affordable creation
and maintenance of large bibliographic databases. Extracting
the components of references, such as author names, arti-
cle title, journal name, publication date and other entities,
is therefore a valuable and sometimes necessary task. This
paper describes a two-step process using statistical machine
learning algorithms, to first locate the references in HTML
medical articles and then to parse them. Reference locating
identifies the reference section in an article and then decom-
poses it into individual references. We formulate this step as
a two-class classification problem based on text and geomet-
ric features. An evaluation conducted on 500 articles drawn
from 100 medical journals achieves near-perfect precision
and recall rates for locating references. Reference parsing
identifies the components of each reference. For this sec-
ond step, we implement and compare two algorithms. One
relies on sequence statistics and trains a Conditional Random
Field. The other focuses on local feature statistics and trains
a Support Vector Machine to classify each individual word,
followed by a search algorithm that systematically corrects
low confidence labels if the label sequence violates a set
of predefined rules. The overall performance of these two
reference-parsing algorithms is about the same: above 99%

J. Zou (B) · D. Le · G. R. Thoma
Lister Hill National Center for Biomedical Communications,
National Library of Medicine, National Institutes of Health,
8600 Rockville Pike, Bethesda, MD 20894, USA
e-mail: jzou@mail.nlm.nih.gov

accuracy at the word level, and over 97% accuracy at the
chunk level.

Keywords HTML document analysis · Document Object
Model (DOM) · Reference parsing · Support Vector Machine
(SVM) · Conditional Random Field (CRF)

1 Introduction

The automatic extraction of bibliographic data from medical
journal articles is key to the affordable creation of citations
in MEDLINE�, the flagship database of the U.S. National
Library of Medicine (NLM), containing over 17 million
records and searched over 3 million times per day world-
wide. The references that typically appear at the end of such
articles provide valuable information not only for generating
bibliographic data items, such as Comment-On/Comment-In
articles (commentary article pairs) [19], but also for systems
that index articles by automatically assigning Medical Sub-
ject Headings to them [1], as well as many other applications.

Hence, the analysis of these references is an important pre-
processing step. Our method to accomplish this is a two-step
process:

(1) Locate references: to identify the reference section in an
article, and then decompose the section into individual
references.

(2) Parse references: to extract entities from individual ref-
erences. Our goal is to extract the following 7 entities:
Citation Number (<N>), Author Names (<A>), Arti-
cle Title (<T>), Journal Title (<J>), Volume (<V>),
Pagination (<P>) and Publication Year (<Y>). All
remaining words in the reference are labeled as Other
(<O>). Most of these “Other” words are those such as

123

J. Zou et al.

Table 1 Examples of reference styles collected from MEDLINE-indexed medical articles

(a) 2. M.F. Perutz, Nature of haem-haem interaction, Nature 237 (1972), pp. 495–499. Full Text via CrossRef | Abstract + References in
Scopus | Cited By in Scopus
<N>2.<N> <A>M.F. Perutz, <T> Nature of haem-haem interaction, </T> <J>Nature</J> <V>237</V> <Y> (1972)</Y> <P> pp.
495–499</P>. <O> Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus </O>

(b) Cao et al., 2002a X. Cao, C. Tang and Y. Luo, Effect of nerve growth factor on neuronal apoptosis after spinal cord injury in rats, Chin.
J. Traumatol. 5 (2002), pp. 131–5. Abstract + References in Scopus | Cited By in Scopus
<N> Cao et al. 2002a </N> <A>X. Cao, C. Tang and Y. Luo, <T> Effect of nerve growth factor on neuronal apoptosis after spinal
cord injury in rats, </T> <J> Chin. J. Traumatol. </J> <V>5</V> <Y> (2002) </Y> <P> pp. 131–5.</P> <O> Abstract + References
in Scopus | Cited By in Scopus </O>

(c) Saha, S., et al. (2002) Using the transcriptome to annotate the genome. Nat. Biotechnol, 20, 508–512 [CrossRef][ISI][Medline].
<A>Saha, S., et al.<Y>(2002)</Y> <T>Using the transcriptome to annotate the genome.</T> <J>Nat. Biotechnol,</J>
<V>20</V> <P>508–512</P> <O> [CrossRef][ISI][Medline]</O>

(d) Paddock, C. D., and J. E. Childs. 2003. Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin. Microbiol. Rev. 16:37–64.
[Abstract/Free Full Text]
<A>Paddock, C. D., and J. E. Childs. <Y>2003.</Y><T>Ehrlichia chaffeensis: a prototypical emerging pathogen.</T> <J>Clin.
Microbiol. Rev.</J> <V>16</V>: <P>37–64</P>. <O>[Abstract/Free Full Text]</O>

(e) Wagner, A. F., Frey, M., Neugebauer, F. A., Schäfer, W., and Knappe, J. (1992) Proc. Natl Acad. Sci. U. S. A. 89, 996–1000[Abstract/Free
Full Text]
<A>Wagner, A. F., Frey, M., Neugebauer, F. A., Schäfer, W., and Knappe, J. <Y>(1992)</Y> <J>Proc. Natl Acad. Sci. U. S.
A.</J> <V>89</V>, <P>996–1000</P> <O>[Abstract/Free Full Text]</O>

(f) 23. Ytrehus K, Liu Y, Downey J M. Am J Physiol. 1994;266:H1145–H1152. [PubMed] [Full Text]
<N>23.</N> <A>Ytrehus K, Liu Y, Downey J M. <J>Am J Physiol.</J> <Y>1994</Y>;<V>226</V>:<P> H1145–H1152</P>
<O>[PubMed] [Free Full Text]</O>

(g) 25. M. Huse, J. Kuriyan, Cell 109, 275 (2002). [CrossRef] [ISI] [Medline]
<N>25.</N> <A> M. Huse, J. Kuriyan, <J> Cell </J> <V>109</V> <P>275</P> <Y>(2002)</Y> <O>[CrossRef] [ISI]
[Medline]</O>

(h) Roe, BA.; Crabtree, JS.; Khan, AS. DNA Isolation and Sequencing. Hoboken: John Wiley and Sons; 1996.
<A>Roe, BA.; Crabtree, JS.; Khan, AS. <T>DNA Isolation and Sequencing</T> <O>Hoboken: John Wiley and Sons</O>
<Y>1996</Y>

(i) 1. Tjaden P, Thoennes N. Full Report of the Prevalence, Incidence and Consequences of Violence Against Women: Research Report.
Washington, DC: National Institute of Justice; 2000. NCJ 183781.
<N>1.</N> <A> Tjaden P, Thoennes N <T> Full Report of the Prevalence, Incidence and Consequences of Violence Against
Women: Research Report.</T> <O>Washington, DC: National Institute of Justice;</O> <Y>2000</Y> <O>NCJ 183781</O>

(j) Lindell, T.J. (1980) Inhibitors of mammalian RNA polymerases In P.S., Sarin and R.C., Gallo (Eds.). Inhibitors of DNA and RNA
Polymerases, Oxford Pergamon Press pp. 111–141.
<A>Lindell, T.J. <Y>(1980)</Y> <T> Inhibitors of mammalian RNA polymerases </T><O>In P.S., Sarin and R.C., Gallo (Eds.).
</O><J>Inhibitors of DNA and RNA Polymerases </J> <O> Oxford Pergamon Press </O> <P>pp. 111–141</P>

(k) 25 Collaborative Computational Project Number 4, The CCP4 suite: programs for protein crystallography, Acta Crystallog. sect. D 50
(1994), pp. 760–763.
<N>25</N> <A>Collaborative Computational Project Number 4 <T>The CCP4 suite: programs for protein crystallography </T>
<J>Acta Crystallog. sect. D</J> <V>50</V> <Y>(1994)</Y> <P>pp. 760–763</P>

“crossref”, “medline”, or “scopus” placed at the end of
the references to provide quick access to external links.
Other typical words in this category include editors,
publishers, city names and institute names, which can-
not be readily categorized into the above-mentioned 7
entities. Table 1 illustrates some typical “Other” words,
which are marked with <O> tag.

Several well-known citation-indexing systems, e.g.,
CiteSeer [23], ISI Web of Knowledge [41] and Google
Scholar [42], implement algorithms for locating and parsing
references. These systems usually use Web search engines
to crawl the Web and download PDF and PostScript articles.
After converting these to text, they first locate the reference
section and then parse each reference to extract fields such
as title, author and year of publication.

In contrast, our focus is on HTML-formatted medical jour-
nal articles, which differ from PDF/PS-converted text files
in several ways. One problem with HTML-formatted texts
is that visually similar pages can be implemented with com-
pletely different HTML codes. We therefore choose to use
statistical machine learning approaches, rather than relying
on HTML-tag-based heuristic rules.

While the most straightforward method for locating ref-
erences in HTML journal articles is to use HTML tags, the
HTML syntax is overly flexible and is designed for displaying
and manipulating, rather than to semantically understand, the
HTML pages. Consequently, references in these pages can be
implemented by completely different HTML codes, leading
to incorrect results when using predefined HTML tags for
reference locating [39].

First, we observe the following with regard to biblio-
graphic references:

123

Locating and parsing bibliographic references in HTML medical articles

(1) They contain distinctive text, e.g., author names, abbre-
viated journal names, pagination, publication year;

(2) They have similar geometric features, e.g., they occur
at the end of the article, have similar width and height;

(3) All references are consecutive neighbors, adjacent ones
being separated by a line break.

These observations suggest formulating reference loca-
tion as a two-class classification. The procedure would be
the following: after rendering the HTML article in a browser,
segment the pages into zones, extract geometric and text fea-
tures from each zone, and use an SVM classifier to classify
each zone as either a reference or a non-reference zone. The
third observation listed earlier is a useful constraint that can
expedite the process and increase its reliability.

Formulating a procedure for parsing references is chal-
lenging because of the variety of formats appearing in the
5,200 journals indexed by NLM. Table 1 is a partial list
of these reference styles. While only shorter references are
shown in the table for brevity, their lengths vary from less
than 10 to more than 100 words.

Shown in each part of the table is a reference as it appears
in an article with HTML tags removed, and this reference
labeled in an XML-like format. We see that these references
vary considerably in style, and many variations are listed in
this paragraph. For example, (a) has a Citation Number, but
reference (b) is identified by a combination of first author
and publication year. Some other references, on the other
hand, have neither a Citation Number nor any indication of
sequence. There are also many different formats for Author
Names: initials followed by last names, e.g., (a); last names
followed by initials, e.g., (e); not all authors listed, e.g., (c);
and the first author and the remaining authors following dif-
ferent formats, e.g., (d). In most cases, the Article Title exists,
but, sometimes not, as in (e). Most Journal Titles are abbre-
viated, while some are not. Publication Year may or may not
be inside a parenthesis. Pagination may be in the full format,
e.g., 495–499 in (a), an abbreviated format, e.g., 131–5 in
(b), or only indicate the starting page, e.g., 275 in (g). They
may be preceded by “pp.”, “p.”, or by nothing. Page num-
bers may also contain non-digits, e.g., H1145-H1152 in (f).
There are also several different volume–page combinations.
The eight entities of interest to us (listed earlier) may vary
in the order they appear. Most references cite journal papers,
but variations in citations appear for books, e.g., (h), reports,
e.g., (i) and edited book chapters, e.g., (j). Occasionally, the
“authors” may be organizations, e.g., (k). In addition to all
these stylistic differences, there are many minor variations in
the use of commas, spaces, semicolons or periods to separate
different entities. Some references have all words in the Arti-
cle Title capitalized and others just the first word; and so on.

These variations pose challenges to the accurate parsing
of the references. For this purpose, we have implemented

and compared two algorithms, each based on a state-of-
the-art machine learning technique. One uses the Conditional
Random Field (CRF), a statistical sequence model, to model
the word sequence of a reference.

The other involves local word classification and is itself a
two-step process. The first step is a multi-class (in our case,
8-class) classification, which assigns an entity label to each
word in the reference. We examine local features of each
word, including the attributes of the word itself and those of
its adjacent neighbors.

In addition, there are rules that always hold, regardless of
the many styles and variations. For example:

• Citation Number (<N>) is always the first entity, if it exists.
• “pp.” or “p.”, if it appears and is labeled as pagination,

has to be followed by at least one other pagination word
(usually the actual page numbers).

The complete set of such rules is listed in Sect. 4.2.2. These
rules prove to be useful global constraints with which the
label sequence must comply. In the second step of the algo-
rithm, labels exhibiting low confidence are systematically
corrected if the entire label sequence violates these global
rules.

This paper is organized as follows: in Sect. 2, we review
existing methods for both locating and parsing references.
We also briefly discuss the rationale and novelty of our
approach. We discuss our methods in detail in Sects. 3 and 4.
Experimental evaluation is presented in Sects. 5 and 6 and
a summary is given in Sect. 7.

2 Related work

2.1 Related work on reference locating

Existing algorithms for HTML page understanding are typ-
ically designed in a straightforward way, i.e., they depend
heavily on the HTML tags. For example, Buyukkokten et al.
and Kaasinen et al. use the <P>, <TABLE> and tags
to divide Web pages for subsequent conversion and summa-
rization [4,18]. Diao et al. use four types of tags, including
<P>, <TABLE>, / and <H1>∼<H6>, to detect
paragraph, table, list and headings, respectively [11].

For specifically locating references in HTML articles,
there does not appear to be any reported work. A related
problem however, which has been studied recently by sev-
eral researchers, is mining data records from Web pages. Data
records are a list of similarly structured items, e.g., a list of
products on sale. Liu et al. exploit the Web page structure,
mostly depending on string matching HTML-tag sequences
to detect data records [25]. Zhai and Liu extended this work,
using visual information and tree matching to detect data

123

J. Zou et al.

Table 2 59 features for reference locating

Features Comments

1. left The left position of the zone bounding box normalized by the page width

2. top The top position of the zone bounding box normalized by the page height

3. width The width of the zone bounding box normalized by the page width

4. # of words The number of words in the zone

5. 4-digit year pattern Does the zone contain a word in four digit year pattern, e.g., 2005? The four digit year pattern must
not be later than the current year.

6. pagination pattern Does the zone contain a word in pagination pattern, e.g., 200-5, H100-H105?

7. # of author name words The number of name words in the zone. Our name dictionary contains 236,748 names, which are
collected from 10 years of MEDLINE data

8. # of single-upper-case-letter words The number of single-upper-case-letter words, e.g., J, in the first reference of Fig. 1.

9. # of double-upper-case-letter words The number of double-upper-case-letter words, e.g., JS, in the second reference of Fig. 1.

10 ∼ 59. Special word features Does the zone contain the following words: j, crossref, abstract, full, text, medline, free, pp, via,
scopus, cited, biol, amp, isi, infotrieve, microbiol, order, chem, mol, sci, no, res, proc, acad, bio-
chem, natl, appl, al, et, acta, bacteriol, amino, environ, nature, summaryplus, links, rev, escherichia,
biochemistry, vol, med, sect, crystallogr, immunol, biophys, crystallog, nat, clin, immun, nucleic.

records, and then a partial tree alignment algorithm to align
data records, and extract information from each one [38].
Reis et al. assumed that certain groups of Web pages share
common format and layout characteristics and designed a
tree-matching algorithm to extract content from news pages
[34].

These data record–mining algorithms have been used to
extract consumer product reviews, news, Internet forum post-
ings and several other applications. These algorithms are also
mostly based on the HTML DOM (Document Object Model)
tree and HTML tags. The occurrence of similar DOM tree
structures in the Web page is the primary cue for locating
and aligning data records and for extracting information from
them.

On the other hand, to extract data from scanned docu-
ments, geometric features are by far the most important.
Scanned document layout analysis, which includes geomet-
ric and logical layout analyses, has been extensively doc-
umented in the literature. Geometric layout analysis, as its
name suggests, concentrates on analyzing document images
based on their geometric features. Most of these algorithms
follow either a top-down or a bottom-up approach. Top-
down algorithms recursively divide a whole page into smaller
zones. The process terminates when certain criteria are met.
Typical top-down methods include the X-Y cut [14,27],
shape-directed-covers-based algorithms [2] and several oth-
ers. Bottom-up algorithms start with the image pixels, cluster
them into connected components, then into words, lines and
finally zones. Typical bottom-up methods include Docstrum
[29], Block Adjacency Graph (BAG) [17]. Hybrid methods
combining split and merge strategies have also been proposed
in [15,32]. Logical layout analysis is used to analyze the
logical components of the scanned document, though most
algorithms also consider geometric features [20,21]. In other

scanned document analysis algorithms designed for special
purposes, such as name extraction [24], geometric features
(sometimes also called visual cues), such as gaps between
text zones, are also extensively utilized. A review of meth-
ods for scanned document image analysis is given in [28].

Our approach to locating references from HTML arti-
cles uses both text and geometric features. By rendering
the HTML articles in a Web browser (e.g., Microsoft Inter-
net Explorer), both text and geometric information can be
extracted. The text features include orthographic and binary
features indicating whether or not certain words appear. The
geometric features extracted are the normalized locations and
sizes of the zone bounding boxes. These features, listed in
Table 2, are much more reliable cues compared to HTML
tags, and we therefore formulate reference locating as a two-
class classification based on these features.

2.2 Related work on reference parsing

In contrast to reference locating, reference parsing has
received considerable attention in the literature. Existing
approaches fall into two categories: rule-based methods and
those based on machine learning. Rule-based methods rely
on rules based on a domain expert’s observation. For exam-
ple, Chowdhury [6] and Ding et al. [12] have manually crafted
templates to summarize the recognizable patterns formed by
either the data and/or text surrounding the data. A set of rules
is usually associated with the templates, and when the text
matches the templates, the data are extracted according to the
rules. Day et al. [9,10] extended the template-aided mining
approach, and used INFOMAP, a hierarchical framework,
for knowledge (template) representation. Huang et al. used a
gene sequence alignment tool, BLAST (Basic Local Align-
ment Search Tool), to extract citation metadata [16].

123

Locating and parsing bibliographic references in HTML medical articles

Fig. 1 Two examples of
references. a As displayed in the
browser; b HTML code; c DOM
sub-tree and zone sub-tree
(marked with dashed bounding
boxes). <TD> is the parent
DOM node of the two
references, but also of all
references in the article. Since it
is not included in the HTML
code in (b), we use a dotted
ellipse

(a)

11. Wiener J, Quinn JP, Bradford PA, et al. Mu ltiple antibiotic-resistant
<I>Klebsiella</I> and <I>Escherichia coli</I> in nursing homes. <I>JAMA.</I> 1999;281:517-523. <FONT face="verdana, arial,
helvetica, sans-serif" size=1><NOBR>FREE FULL TEXT</NOBR>

12. Kayser-Jones JS, Wiener CL, Barbaccia JC. Factors contributing to the
hospitalization of nursing home residents. <I>Gerontologist.</I> 1989;29:502-510. <FONT face="verdana, arial,
helvetica, sans-serif" size=1>ABSTRACT

(b)

Parent
Zone

<A>

#11.

#Wiener… <I>

#Klebsiella

#and <I>

#Esch…

#in… <I>

#JAMA.

#1999… <A>

 <NOBR>

#FREE

#FULL…

 <A>

#12.

#Kayser… <I>

Gerontologist

#1989… <A>

 #ABSTRACT

<TD>

Child Zone
Child Zone

(c)

Journal publishers usually require authors to strictly fol-
low predefined citation styles, and carefully edit submitted
material before publication. Therefore, for a homogeneous
set of journals, rule-based methods can be very successful.
On the other hand, these methods require domain experts not
only to handcraft the rules, but also maintain them over time.
The rigidity of the rules prevents adaptability and makes it
difficult to tune the system for a heterogeneous set of journals.
In MEDLINE, citations are drawn from articles in over 5,200
journals from hundreds of publishers, leading to a large var-
iation of citation styles. This poses a challenge to rule-based
approaches for reference parsing.

In contrast, by automatically learning the knowledge from
training samples, machine learning approaches exhibit good
adaptability and have therefore attracted a great deal of inter-
est. Parmentier and Belaïd developed a concept network to
hierarchically represent and recognize structured data from
bibliographic citations [31]. Besagni et al. took a bottom-
up approach based on Part-of-Speech (PoS) tagging [3].
In this approach, basic PoS tags, which are easily recog-
nized, are first grouped into homogeneous classes. Confus-
ing tokens are then classified by either a set of PoS correction
rules or a structure model generated from correctly detected
records.

Cortze et al. propose a knowledge-based approach
for reference parsing, called FLUX-CiM [7]. This is an
unsupervised approach based on a frequency-tuned lexicon
and includes four stages: blocking, matching, binding and
joining.

Hidden Markov Model (HMM) and Conditional Random
Field (CRF), as successful machine learning tools for infor-
mation extraction from sequences, have also been studied
for parsing references. For example, Takasu applied HMM
for parsing erroneous references [37], and Councill et al.
used CRF to implement an open source reference-parsing
package [8]. Since CRF has recently been reported to out-
perform HMM [33], we pick CRF as one of our reference-
parsing methods.

Another frequently adopted machine learning method for
information extraction is the Support Vector Machine (SVM)
classifier. For example, Okada et al. combined SVM and
HMM for bibliographic component extraction [30]. In one
of our reference-parsing algorithms, therefore, we use the
SVM to classify each individual word. We make the intui-
tive assumption that adjacent words in a reference are more
likely than not to belong to the same entity. We exploit this
important local dependency by using not only the features
extracted from the word itself, but also those extracted from
its neighbors.

3 Reference locating

Our method begins by rendering the HTML article in Inter-
net Explorer and then creating an HTML DOM (Doc-
ument Object Model) tree. DOM tree is a well-defined
model published by W3C (World Wide Web Consortium)
for accessing and manipulating HTML documents. However,
DOM tree usually over segments the HTML article. Figure 1

123

J. Zou et al.

illustrates the HTML codes of two consecutive references,
their rendering results, and their corresponding DOM sub-
trees.
Following the DOM convention, we use <> to indicate ele-
ment nodes and use # to indicate text nodes. The two ref-
erences, as shown in Fig. 1a, are simple text lines, but
correspond to complicated DOM sub-trees, shown in Fig. 1c.
(Dashed bounding boxes indicate zone sub-trees and are
explained below.) HTML DOM tree is the starting point for
our reference locating algorithm, but a preprocessing step
is required for pruning over-segmented sub-trees that are
unnecessary, such as the DOM sub-trees in the lower two
bounding boxes.

To explain our method, we first define two types of HTML
tags:

Inline tags are those that do not introduce line breaks.
A complete inline tag list in our algorithm includes: <A>,
<ACRONYM>, <ABBR>, , <BIG>, <CITE>,
<CODE>, , <DFN>, , , <I>, ,
<INPUT>, <INS>, <NOBR>, <KBD>, <Q>, <SAMP>,
<SMALL>, , , <SUP>, <SUB>, <TT>,
<U>, <VAR>.

Line-break tags are the remaining tags, which do intro-
duce line breaks, e.g., <P>, <TABLE>, <DIV>, <H1>.

We merge all consecutive inline DOM nodes. This gener-
ates another tree structure that we call a zone tree. Each zone
node contains either a set of consecutive inline DOM nodes,
or a single line-break node. Examples are shown in Fig. 1c, in
which dashed bounding boxes correspond to zone nodes. Two
child zones are formed due to the line-break
 nodes.
Their parent is a zone corresponding to the <TD> DOM node.
This is the only step in our algorithm that uses the HTML-
tag information. After this step, the text lines without line
breaks are usually formed into one zone. Subsequent steps
of the algorithm are independent of HTML tags and are con-
ducted on the zone tree.

From each zone node containing non-space text, 59 geo-
metric and text features are extracted. The first 9 features
with brief explanations are listed in the first 9 rows of Table 2.
The remaining 50 are binary features which indicate whether
the specified words appear in the text. These 50 words are
selected by the GSS measure [13].

GSS is named after the three authors who proposed a
method for selecting informative words. In a survey of text
categorization by Sebastiani [35], the GSS measure is recog-
nized as one of the best methods for this purpose. Specifically
for our two-class classification, we make a slight modifica-
tion and define a joint GSS measure for each word tk to be:

GSS(tk) = ∣
∣P(tk, c1)P(t̄k, c0) − P(tk, c0)P(t̄k, c1)

∣
∣ ,

where P(t̄k, ci) indicates the probability that, given a ran-
dom zone, word tk does not occur in the zone and that the

zone belongs to category ci . The GSS measure reflects the
intuition that the best words are the ones distributed most dif-
ferently in the reference and non-reference zones. P(tk, ci)

and P(t̄k, ci) are estimated by counting occurrences in the
training samples, and the top 50 words with the highest GSS
measures are selected and listed in the last row of Table 2.
The words are listed in descending order of their GSS val-
ues. Because our training samples are medical articles, many
of the selected words are abbreviated medical journal titles.
For locating references in general publications, the most
informative word list can be easily created by following the
same procedure. Also note that special words like “cross-
ref”, “medline”, “scopus” and “infotrieve” are also highly
ranked. These are usually placed at the end of references to
provide quick access to external links. Intuitively, they are
informative words for detecting references.

We used LibSVM [5], an SVM library developed at the
National Taiwan University, to implement our reference zone
classification. We adopted Radial Basis Function (RBF) as
the kernel function, and the values for two parameters, C
(penalty parameter of the errors) and γ (RBF parameter),
were selected through exhaustive grid-search using cross-
validation on training samples.

This SVM classifier assigns each zone tree node a prob-
ability value for being a reference zone. Because references
are consecutive neighbors, they must be consecutive siblings
in the zone tree. We use the following three-step heuristic to
label the reference zones:

(1) We find a parent zone node, which has the most refer-
ence-like children (probability of being reference zone
is greater than 0.5);

(2) Under this parent, we search for the best locations of
the first and the last reference zones:

[t∗
F
, t∗L] = arg max

tF ,tL

∏

tF ≤i≤tL

P(ci = R)

×
∏

0≤ j<tF ,tL< j≤N

(1 − P(c j = R)),

where tF and tL are the locations of the first and the
last references, N is the total number of children zones,
P(ck = R) is the probability of the kth child to be a
reference zone. Since there are usually no more than
about 100 children zones under a parent, we simply use
exhaustive search to find t∗

F
and t∗L ;

(3) We label all consecutive sibling zones between t∗
F

and
t∗L reference zones.

These steps are necessary for two reasons. One is that for
some journals, the footnotes and references share the same
list, with footnotes appended below the reference section in

123

Locating and parsing bibliographic references in HTML medical articles

Table 3 14 binary features extracted from individual words

Feature True if

1.Author Name feature the word is in Author Name dictionary.

2. Article Title feature the word is in Article Title dictionary.

3. Journal Title feature the word is in Journal Title dictionary.

4. Pagination pattern the word is in pagination format, e.g., 200-5, H100-H105.

5. Name Initial pattern the word is in name initial pattern, e.g., J.Z., J.-Z.

6.Four digit year pattern the word is in four-digit year pattern, e.g., 2005. It must not be later than the current year.

7. et, al the word is “et” or “al”, or “et.”, or “al.”.

8. pp., p. the word is “pp.”, or “p.” or “pp”, or “p”.

9. Ended with “.” the word ends with “.”.

10. Upper case first char the first character of the word is upper case.

11. Letter only the word contains letters only.

12. Digit only the word contains digits only.

13. Digit and letter the word contains both digits and letters.

14. Digit and letter only the word contain digits and letters only.

an article. We would like to remove those footnote siblings.
The other much more serious reason is that the visual layout
of an HTML page can be very different from the structure
layout of the underlying HTML code. Even though some
reference sections may visually appear to be stand-alone sec-
tions, in the actual HTML implementation, they may share
the same DOM parent with non-reference zones. The steps
given earlier are indispensable for handling these cases.

4 Reference parsing

For the step following reference locating, we have imple-
mented two reference-parsing algorithms. One relies on
sequence statistics and trains a Conditional Random Field
(CRF) sequence model. The other focuses on local feature
statistics and trains a Support Vector Machine (SVM) to clas-
sify and label each individual word, followed by a search
algorithm that systematically corrects low confidence labels
if the label sequence violates a set of predefined rules. We
describe these in the following sub-sections, and compare
them in Sect. 6.

4.1 CRF for reference parsing

CRF is a probabilistic model designed for labeling sequence
data [22,36]. It is defined as the conditional probability
of a state sequence, s = {s1, s2, . . . , sN }, given an input
observation sequence o = {o1, o2, . . . , oN } : p(s|o) ∝
exp

(
∑N

t=1 F(s, o, t)
)

, where N is the length of the

sequence, and F(s, o, t) is the sum of CRF feature functions

at position t . There are two types of CRF feature functions:
edge feature functions, fi (·), that characterize state–state
transitions, and state feature functions, g j (·), that char-
acterize the observation-state relations. We use first-order
Markov chain in our CRF model and the observations are
extracted from the word itself and its immediate left and
right neighbors. Therefore, our CRF feature functions can be
written as:

F(s, o, t) =
∑

i

λi fi (st−1, st) +
∑

j

λ j g j (ot−1, ot , ot+1, st).

The goal of training a CRF is to estimate the parameters
λi and λ j , i.e., the weights of feature functions. The trained
CRF model can then be used to assign labels to unknown
sequences.

In order to extract observation features, we generated word
dictionaries for Author Names, Article Titles and Journal
Titles from 10 years of MEDLINE data. There are a total
of 236,748 Author Name words, 108,484 Article Title words
and 6,909 Journal Title words. The observation feature vector
ot at position t contains not only the word itself, but also 14
other binary features as well. The first 3 features of a word,
Author Name Feature, Article Title Feature and Journal Title
Feature, are binary features indicating whether the word
exists in the corresponding dictionaries. We also extract
an additional 11 binary features. All 14 binary features
and their brief explanations are listed in Table 3. We
used MALLET [26], a machine learning JAVA library
for language processing, developed by McCallum and
colleagues, to implement our CRF reference-parsing
algorithm.

123

J. Zou et al.

4.2 Combining SVM and global rules for reference parsing

In our second algorithm, we treat reference parsing as a multi-
class classification of each individual word in a reference
using an SVM classifier. This classifier is trained on a set of
manually labeled references, and then applied to test refer-
ences in which it classifies (labels) every word. Our method
follows this step by ensuring that the sequence of the class
labels does not violate certain heuristic rules (Sect. 4.2.2)
that are observed to always hold. If the label sequence
violates these rules, a search algorithm is used to find a
sequence which complies with them at the highest proba-
bility (Sect. 4.2.3).

4.2.1 Single word classification using SVM

The SVM uses 15 features from each word. The first 14
are the same ones listed in Table 3. The 15th feature is the
normalized position, i.e., the position of the word normalized
by the total number of the words in the reference.

Intuitively, we expect adjacent words in a reference to have
a higher probability of belonging to the same entity. In order
to exploit these local contextual dependencies, the features
used for the classification are extracted not only from the
word itself, but also from its neighbors.

As done for reference locating, we used LibSVM with
RBF kernel function for this single word classification. Sim-
ilarly, the two parameters, C (penalty parameter of the errors)
and γ (RBF parameter), were also selected through exhaus-
tive grid-search using cross-validation on training samples.

4.2.2 Global rules for references

By inspection, we have found that the following rules always
hold for references.

• “J”, “J.” or “Journal” cannot be labeled as an isolated
single Journal Title entity. At least one of its adjacent
neighbors must also be part of the Journal Title.

• “pp.” or “p.”, if labeled as pagination, has to be followed
by at least another pagination word.

• Except for “Other” entity (defined in Sect. 1), the remain-
ing entities can only consist of consecutive words, and
appear at most once in the reference.

• A Citation Number must be the first entity, if it exists.
• Author entity must appear before Article Title and Journal

Title, if these exist.
• Article Title entity must appear before Journal Title, if

this exists.
• Journal Title must appear before Volume and Pagination,

if they exist.
• Volume must appear before Pagination, if this exists.

These global rules are very strong and useful constraints,
but most of them are difficult to model with statistical
models. We therefore explicitly check whether the label
sequences obey the rules with a search algorithm described
below.

4.2.3 A search algorithm for finding the optimal label
sequence which complies with the rules

Due to the high accuracy of single word classification, most
references can already be correctly parsed. For those that do
not pass the global rule test, nearly all of them are close to
the correct label sequence with only a few words mislabeled.
The goal is then to identify and correct those mislabeled
words. We present a systematic search algorithm to find a
label sequence that is valid (obeys the global rules) and is
most likely (has the highest probability).

Given an N word reference, {w1, w2, . . . , wN }, and M
(in our case, M = 8) entity labels, {c1, c2, . . . , cM }, single
word classification calculates an M × N probability matrix
P. An element of P, p(c j |wi), represents the posterior prob-
ability of word wi belonging to entity c j , which is the output
from the single word SVM classifier. To avoid computational
overflow, log-probability, l(c j |wi) = ln p(c j |wi), is used in
the following discussions.

The log-probability of a label sequence, L = {c1, c2, . . . ,

cN }, where ci ∈ {c1, c2, . . . cM } can be calculated as: l(L) =
∑N

i=1 l(ci |wi). The cost of changing a word’s label in the
sequence can also be calculated as: Cost(ci → c′

i |wi) =
l(ci |wi) − l(c′

i |wi). The cost of changing labels of K
words, K ≤ N in a label sequence is then: Cost(L →
L ′|w1, w2, . . . , wK) = ∑K

k=1 Cost(ck → c′
k |wk).

The process of finding the most likely and valid label
sequence then becomes a search for possible label sequence
modifications in the ascending order of their costs. The search
stops at the first label sequence, which obeys the global rules.
Because there are M N − 1 possible modifications, it is com-
putationally prohibitive to calculate costs for all possible
modifications and then sort them. We present an algorithm
which enumerates sequence modifications in ascending order
of their costs.

We first calculate the costs for all N (M − 1) possi-
ble single-token modifications (only one word’s label is
modified) and sort them in ascending order. This is not
computationally expensive. We arrange these N (M − 1)

single-token modifications in the middle line of Fig. 2
(marked with a dashed bounding box) in ascending order
of their costs. <1> indicates the single-token modifica-
tion with the minimum cost, and so on. It is easy to see
that the first and second sequence modifications must be
the first two single-token modifications. In each subse-
quent column, we list all possible multi-token modifica-
tions, which are all possible combinations of the previous

123

Locating and parsing bibliographic references in HTML medical articles

… …

… …

<1>

<3,1>

<4,3,2>

<5,4,3,1>

…

…

…

…

… …

… …

… …

… …

<2> <3> <4> <5> <6>

<2,1> <3,2>

<4,1>

<4,2>

<4,3>

<4,2,1>

<5,2,1>

<5,1>

<5,3>

<5,2>

<5,4>

<5,3,2>

<5,4,1>

<5,4,3>

<5,4,2>

<5,4,3,2>

<7>

<3,2,1>

Fig. 2 Illustration of the algorithm for searching for valid and most
likely reference label sequence

single-token modification and all other previous single- and
multi- token modifications. For example, in Column 3, the
previous single-token modification is <2>, and there is only
one other modification, i.e., <1>, so there is only one multi-
token modification, i.e., <2,1>. Assuming that the cost of
<2,1> is larger than the cost of <3>, we place it below <3>
in the column. In Column 4, the previous single-token modi-
fication is <3>, and all other possible previous modifications
include <1>, <2> and <2,1>, so we have three multi-token
modifications. They are arranged according to their costs as
shown in Column 4. In this case, the cost of <3,1> is smaller
than that of <4>, and therefore it is placed above <4>. The
costs of <3,2> and <3,2,1> are larger than that of <4>, and
therefore they are placed below <4>. Let us assume that <1>
and <3> are the modifications to the same word, so the modi-
fications <3,1> and <3,2,1> are meaningless. We mark them
with dashed circles and abandon them. Similarly, we create
Columns 5, 6 and so on. In this example, <1>, <3>, <5>
are assumed to be single-token modifications of the same
word, and <2> and <4> are single-token modifications of the
other two words. Meaningless multi-token modifications are
marked with dashed circles.

For each column, let us call the modifications above the
single-token modification the upper column, and the mod-
ifications below the single-token modification the lower
column. Although the modifications in each column are
ordered, the modifications in the lower column may have
higher cost than the modifications in the following columns.
However, a key observation is that the modifications in an
upper column must be smaller than those in the lower col-
umn and the following columns. This is the key for creating
new columns dynamically and enumerating all modifications
in ascending order of their costs. The algorithm is shown
below:

1. Calculate costs for all N (M − 1) single-token mod-
ifications, and sort them in ascending order.

2. Test the first single-token modification. If it obeys
the rules, go to the end, otherwise continue.

3. Test the second single-token modification. If it
obeys the rules, go to the end, otherwise continue.

4. Create Column 3, and save all modifications into an
ascending ordered list.

5. Repeat for K = 3, 4,…, N(M-1)-1:
a. Repeat:
i. Pop up and test the first modification from the

ordered list.
ii. If it obeys the rules, go to the end, otherwise con-

tinue.
iii. Stop when single word modification <K> is

tested.
b. Create Column K + 1, and save the modifications
into the ordered list.

6. Finish testing remaining ordered list.
7. End

It is clear that the algorithm is still an exhaustive search,
but it searches from the label sequence generated by sin-
gle word classification, which, in our case, is close to the
correct solution. Most searches, therefore, terminate very
quickly. Because the search is conducted in the ascending
order of costs, it is guaranteed to find the most likely mod-
ification that obeys the rules. In an actual implementation,
it is of course better to set a limit on the maximum num-
ber of modifications to be tested to avoid lengthy compu-
tation. In our implementation, the search terminates after
10,000 modifications have been tested. In practical sys-
tems, if the search does not terminate when the limit is
reached, this is an indication that the parsing may not be
accurate.

5 Evaluation of reference locating

To evaluate reference locating, we collected a random set of
1,000 articles from the top 100 journals cited in the MED-
LINE 2006 database. We randomly selected 500 of these
articles as training samples, and the remaining 500 as test
samples.

In the 500 training samples there are 21,709 references.
On the other hand, there are significantly more non-reference
zones. Because the SVM classifier is biased toward the class
label with more training samples [40], we retain the same
number of reference and non-reference zones in our training
set for a total of 43,418 zones. These zones are used to find
the 50 most informative words using the GSS measure to
train the SVM classifier.

123

J. Zou et al.

Table 4 Word-level accuracy of
CRF-parsing

Training samples 10 25 50 100 300 600

Accuracy (%) 95.92 97.09 97.96 98.51 98.72 99.04

Table 5 Chunk-level accuracy of CRF-parsing with 600 training sequences

Cit. number Author Title Journal Volume Year Pagination Other Overall

Total 627 1800 1308 1758 1735 1791 1751 1708 12478

Correct 622 1753 1211 1692 1720 1778 1731 1640 12147

Accuracy (%) 99.2 97.4 92.6 96.2 99.1 99.3 98.9 96.0 97.3

Our reference locating method is very reliable. From
22,147 reference zones in 500 test articles, the algorithm
achieves near-perfect precision and recall rates, producing
only 6 false positives and 2 false negatives.

6 Evaluation of reference parsing

To evaluate reference parsing, we manually labeled 2,400
references of which 600 are randomly selected from the 500
training articles as training samples, and the remaining 1,800
are the test samples randomly selected from the 500 test arti-
cles. We evaluate the algorithm performance at two levels.
One is at the word level, i.e., the labeling accuracy of individ-
ual words. The other is at a chunk level, i.e., the percentage
of the entity chunks1 correctly identified.

6.1 CRF-based method

We conducted an evaluation of our CRF-based parsing algo-
rithm by varying the number of training sequences using 10,
25, 50, 100, 300 and all 600 sequences. For 10, 25 and 50
sequences, we randomly selected 5 different sets of training
sequences and repeated the experiments 5 times. For 100 and
300 sequences, we randomly selected 3 different sets of train-
ing sequences and repeated the experiments 3 times. For 600
sequences, we have used all available training sequence, and
can conduct the experiment only once. The averaged results
of the repeated experiments are shown in Table 4. There are
53,622 words in the 1800 test references, and the accuracy
reported in Table 4 is the overall accuracy for all 8 entities.
Higher accuracy is indeed achieved with more training sam-
ples. Table 5 shows the accuracy at chunk level for each entity
with all 600 training sequences.

1 An entity chunk consists of a set of consecutive words that share the
same entity label. For example, the reference in Table 1a contains 8
entity chunks, where the first is the Number chunk consisting of a sin-
gle word “2”, and the second is the Author chunk consisting of two
words, “M.F.” and “Perutz”.

6.2 Method based on SVM and global rule correction

6.2.1 Evaluation of single word classification

For the second approach, i.e., combining SVM and global
rule correction, we first conducted a comprehensive evalua-
tion of the single word classification by varying the number
of training samples and the number of words from which
the features are extracted. Following the same experimental
protocol, we tested with 10, 25, 50, 100, 300 and all 600
training sequences. To vary the number of words from which
the features are extracted, we tested with the word itself (15
features), the word and two adjacent neighbors (the immedi-
ate left and right words, giving 45 features), and the word and
four adjacent neighbors (the immediate two left and two right
words, amounting to 75 features). The experimental results
are shown in the third column of Table 6.

6.2.2 Evaluation of global rule correction

All the above-mentioned experiments are continued with the
global rule correction algorithm described in Sect. 4.2.3, and
the accuracies are reported in the fourth column of Table 6.
We find that accuracies increase after the global rule cor-
rection. For chunk-level evaluation, we conducted an exper-
iment with all 600 training sequences and with 45 features.
The chunk-level accuracy of each entity is reported in Table 7.

6.3 Evaluation on FLUX-CiM data

We conducted an evaluation with the 2000 health science
references from the publicly available FLUX-CiM data set,
using our method combining SVM classification and global
rule correction. No retraining is conducted using FLUX-
CiM data. All FLUX-CiM references are similar in style and
have no Citation Number and Other entities. Results appear
in Table 8. Besides the word and chunk-level accuracies,
which can be compared to Tables 4, 5, 6 and 7, we also
include chunk-level precision, recall and F-measure. These
three measures have been used in Table 3 of [7] for the same

123

Locating and parsing bibliographic references in HTML medical articles

Table 6 Word-level accuracy of single word classification and after global rule correction

Samples Number of words Accuracy of single word Accuracy after global rule
classification (%) correction (%)

10 The word itself, 15 features 89.91 92.67

The word and 2 adjacent neighbors, 45 features 95.28 96.67

The word and 4 adjacent neighbors, 75 features 95.79 96.97

25 The word itself, 15 features 91.65 94.44

The word and 2 adjacent neighbors, 45 features 96.68 97.57

The word and 4 adjacent neighbors, 75 features 97.27 97.68

50 The word itself, 15 features 92.32 94.71

The word and 2 adjacent neighbors, 45 features 97.58 98.36

The word and 4 adjacent neighbors, 75 features 98.17 98.51

100 The word itself, 15 features 92.98 95.12

The word and 2 adjacent neighbors, 45 features 98.00 98.55

The word and 4 adjacent neighbors, 75 features 98.51 98.80

300 The word itself, 15 features 93.36 95.63

The word and 2 adjacent neighbors, 45 features 98.45 98.88

The word and 4 adjacent neighbors, 75 features 98.91 99.06

600 The word itself, 15 features 93.35 95.39

The word and 2 adjacent neighbors, 45 features 98.63 98.98

The word and 4 adjacent neighbors, 75 features 99.07 99.13

Table 7 Chunk-level accuracy of SVM-parsing (after global rule correction) with 600 training sequences

Cit. number Author Title Journal Volume Year Pagination Other Overall

Total 627 1800 1308 1758 1735 1791 1751 1708 12478

Correct 621 1757 1198 1686 1727 1788 1731 1640 12148

Accuracy (%) 99.0 97.6 91.6 95.9 99.5 99.8 98.9 96.0 97.4

FLUX-CiM dataset. We have included precision, recall and
F-Measure reported in [7] in the last three rows of Table 8,
for easy comparison.

Compared to the performance reported in [7], our method
shows lower performance for the Author and Journal entity
chunks,2 but higher performance on the other four entity
chunks. Compared to Tables 5 and 7, the chunk-level accu-
racy of Table 8 is lower. The following may explain the per-
formance of our algorithm: (1) we classify 8 entities, while
FLUX-CiM health science references have only 6 entities.
The more classes, the more difficult the problem; (2) we
do not retrain our algorithm with FLUX-CiM references.
There are some noticeable ground-truth labeling discrep-
ancies between our ground-truth labeling and FLUX-CiM
ground-truth labeling. For example, in FLUX-CiM data, pub-
lishers (e.g., Macmillan Publishing Company) and some-

2 The word-level accuracy of Author and Journal chunks is still high,
which indicates that most of the chunk-level errors are due to mislabel-
ing a few words in the chunk.

times addresses (e.g., New York) are labeled as Journal, but
we label them as “Other”. We have labeled 84 entities as
“Other,” which contributes to the errors.

6.4 Discussion

We summarize the following observations from our
experiments. First of all, the strong local contextual depen-
dencies among reference words should be exploited in refer-
ence-parsing algorithms. This has been clearly demonstrated
by the single word classification experiments. Regardless
of the number of training samples, the accuracies are sig-
nificantly improved if features extracted from the imme-
diate left and right neighbors are combined (45 features).
Combining features from two additional adjacent neighbors
(75 features), on the other hand, achieves only slight accu-
racy improvements, as shown consistently in each cell of
Table 6. This is in agreement with many studies of statis-
tical sequence models, where usually only the first-order

123

J. Zou et al.

Table 8 Accuracy of SVM-parsing (after global rule correction) on 2000 FLUX-CiM health science references

Author Title Journal Volume Year Pagination

Word-level accuracy (%) 99.2 98.7 96.0 98.6 99.9 99.8

Chunk-level accuracy (%) 93.6 86.9 92.7 99.1 99.9 99.7

Chunk-level precision (%) 92.8 87.0 92.7 99.4 100.0 99.8

Chunk-level recall (%) 93.6 86.9 92.7 99.1 99.9 99.7

Chunk-level F-Measure (%) 93.2 86.9 92.7 99.3 100.0 99.7

Chunk-level precision (%) in [7] 98.6 84.9 97.2 96.4 99.8 99.7

Chunk-level recall (%) in [7] 99.0 85.1 89.3 98.7 99.5 99.2

Chunk-level F-Measure (%) in [7] 98.8 85.0 93.1 97.6 99.7 99.5

correlation is modeled, and the first-order Markov chain is
the underlying graphic model.

Secondly, we find that global rule correction is effective
as shown in Table 6. We believe that global rule correction
is a good practical heuristic to correct minor errors. When it
fails, it also serves as a good indicator that the parsing may
be incorrect, and requires operator attention.

The article title contains the most heterogeneous text, and
therefore is the most difficult entity to extract accurately.
Both CRF-parsing and SVM-parsing yield the lowest accu-
racy in Title chunk identification. On the other hand, both
algorithms achieve high accuracy (around 99%) for entities
having distinctive features, such as Number, Volume, Year
and Pagination.

We see from a comparison of Tables 5 and 7 that both ref-
erence-parsing methods (CRF and SVM) essentially achieve
the same overall performance: about 99% accuracy at word
level and above 97% accuracy at chunk level. SVM-pars-
ing missed only 3 Publication Years. SVM is a sophisticated
classifier, which is expected to achieve better performance on
entities having distinctive features. On the other hand, CRF
achieves 1% higher accuracy on Title chunk identification.
Titles contain heterogeneous text, i.e., have varying features.
It is possible that CRF, by modeling the entire sequence,
performs better with such text. We anticipate that overall
performance for all entities may be improved if the advan-
tages of SVM (sophisticated local classifier) and CRF
(powerful sequence model) can be combined.

Most references in our collection are citations to journal
papers (Examples (a)–(g) and (k) in Table 1). Our methods
make few errors for this kind of “standard” references; even
organizational authors (Examples (k) in Table 1) can usu-
ally be successfully labeled. However, in our collection, a
small percentage of references are citations to reports and
books (Examples (h)–(j) in Table 1), and our current algo-
rithm finds it difficult to label their Other (<O>) entities.
For the edited books especially (Examples (j) in Table 1),
the long word sequence naming the editors sometimes con-
fuses the algorithms. Further research is needed to solve this
problem.

7 Summary

We have presented approaches for locating and parsing refer-
ences in HTML-formatted medical journal articles. We for-
mulate reference locating as a two-class classification, and
have demonstrated that text and geometry are very reliable
for locating references. An SVM classifier based on these
features has achieved near 100% accuracy.

The first-order correlation between reference words is
important contextual information and is used in reference-
parsing algorithms. We implemented and compared two
reference-parsing algorithms. CRF-parsing focuses on
modeling the word sequence with Conditional Random
Fields, and SVM-parsing concentrates on local single
word classification. The overall performance of these two
approaches is about the same: above 97% accuracy at chunk
level.

Our algorithm has been applied to medical journal articles
only. However, we expect that it could be easily applied to
other domains by collecting a set of ground-truth samples
and re-training the SVM and CRF models.

Acknowledgments We thank Loc Tran for collecting journal articles
used for training and evaluation of our algorithms and Dr. Jong Woo
Kim for generating the author name dictionary from MEDLINE historic
data. We also thank Eli Cortez from Universidade Federal do Amazonas,
Manaus, Brazil for sharing the FLUX-CiM data with us. In addition,
we thank the two anonymous reviewers for their very constructive com-
ments. This research was supported by the Intramural Research Program
of the National Institutes of Health (NIH), National Library of Medicine
and Lister Hill National Center for Biomedical Communications.

References

1. Aronson, A.R., Bodenreider, O., Chang, H.F., Humphrey, S.M.,
Mork, J.G., Nelson, S.J., Rindflesch, T.C., Wilbur, W.J.: The NLM
indexing initiative. In: Proceedings of AMIA Symposium, pp. 17–
21 (2000)

2. Baird, H.S., Jones, S.E., Fortune, S.J.: Image segmentation by
shape-directed covers. In: Proceedings of International Conference
Pattern Recognition, pp. 820–825 (1990)

123

Locating and parsing bibliographic references in HTML medical articles

3. Besagni, D., Belaïd, A., Benet, N.: A segmentation method for
bibliographic references by contextual tagging of fields. Proc.
ICDAR 1, 384–388 (2003)

4. Buyukkokten, O., Garcia-Molina, H., Paepche, A.: Accordion sum-
marization for end-game browsing on PDAs and cellular phones.
In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 213–220 (2001)

5. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector
machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm (2001)

6. Chowdhury, G.: Template mining for information extraction from
digital documents. Libr. Trends 48(1), 182–208 (1999)

7. Cortez, E., da Silva, A.S., Goncalves, M.A., Mesquita, F.,
de Moura, E.S.: A flexible approach for extracting metadata from
bibliographic citations. J. Am. Soc. Inf. Sci. Technol. 60(6), 1144–
1158 (2009)

8. Councill, I.G., Giles, C.L., Kan, M.-Y.: ParsCit: an open-source
CRF reference string parsing package. In: Proceedings of the 6th
International Language Resources and Evaluation (2008)

9. Day, M.-Y., Tsai, T.-H., Sung, C.-L., Lee, C.-W., Wu, S.-H., Ong,
C.-S., Hsu, W.-L.: A knowledge-based approach to citation extrac-
tion. In: IEEE International Conference Information Reuse and
Integration, pp. 50–55 (2005)

10. Day, M.-Y., Tsai, R.T.-H., Sung, C.-L., Hsieh, C.-C., Lee, C.-W.,
Wu, S.-H., Wu, K.-P., Ong, C.-S., Hsu, W.-L.: Reference metadata
extraction using a hierarchical knowledge representation frame-
work. Decis. Support Syst. 43(1), 152–167 (2007)

11. Diao, Y., Lu, H., Chen, S., Tian, Z.: Toward learning based web
query processing. In: Proceedings of International Conference on
Very Large Databases, pp. 317–328 (2000)

12. Ding, Y., Chowdhury, G., Foo, S.: Template mining for the extrac-
tion of citation from digital documents. In: Proceedings of the 2nd
Asian Digital Library Conference, pp. 47–62 (1999)

13. Galavotti, L., Sebastiani, F., Simi, M.: Experiments on the use of
feature selection and negative evidence in automated text catego-
rization. In: Proceedings of ECDL, pp. 59–68 (2000)

14. Ha, J., Haralick, R., Phillips, I.: Recursive X-Y cut using
bounding boxes of connected components. In: Proceedings 3rd
International Conference Document Analysis and Recognition,
pp. 952–955 (1995)

15. Hauser, S.E., Le, D.X., Thoma, G.R.: Automated zone correction
in bitmapped document images. Proc. SPIE: Document Recognit.
Retr. VII 3976, 248–258 (2000)

16. Huang, I.-A., Ho, J.-M., Kao, H.-Y., Lin, W.-C.: Extracting citation
metadata from online publication lists using BLAST. In: Proceed-
ings of the 8th Pacific–Asia Conference on Knowledge Discovery
and Data Mining, pp. 26–28 (2004)

17. Jain, A.K., Yu, B.: Document representation and its application to
page decomposition. IEEE Trans. Pattern Recognit. Mach. Intell.
20(3), 294–308 (1998)

18. Kaasinen, E., Aaltonen, M., Kolari, J., Melakoski, S., Laakko, T.:
Two approaches to bringing internet services to WAP devices. In:
Proceedings of the 9th International World Wide Web Conference,
pp. 231–246 (2000)

19. Kim, I., Le, D., Thoma, G.R.: Identification of “comment-on
sentences” in online biomedical documents using support vector
machines. In: Proceedings of the SPIE Conference on Document
Recognition and Retrieval, vol. 68150, pp. X1–X9 (2007)

20. Kim, J., Le, D., Thoma, G.R.: Automatic labeling in document
images. In: Proceedings of the SPIE Conference on Document Rec-
ognition and Retrieval, pp. 111–122 (2001)

21. Klink, S., Kieninger, T.: Rule-based document structure under-
standing with a fuzzy combination of layout and textual fea-
tures. Int. J. Document Anal. Recognit. 4, 18–26 (2001)

22. Lafferty, J., McCallum, A., and Pereira, F.: Conditional random
fields: probabilistic models for segmenting and labeling sequence
data. In: Proceedings of the ICML, pp. 282–289 (2001)

23. Lawrence, S., Giles, C.L., Bollacker, K.: Digital libraries and
autonomous citation indexing. IEEE Comput. 32(6), 67–71 (1999)

24. Likforman-Sulem, L., Vaillant, P., de Bodard, A.: Automatic
name extraction from degraded document images. Pattern. Anal.
Appl. 9(2), 211–227 (2006)

25. Liu, B., Grossman, R., Zhai, Y.: Mining Web pages for data
records. IEEE Intell. Syst. 19(6), 49–55 (2004)

26. McCallum, A.K.: MALLET: a machine learning for language tool-
kit. http://mallet.cs.umass.edu (2002)

27. Nagy, G., Seth, S., Viswanathan, M.: A prototype document image
analysis system for technical journals. Computer 25, 10–22 (1992)

28. Nagy, G.: Twenty years of document image analysis in PAMI. IEEE
Trans. Pattern Anal. Mach. Intell. 22(1), 38–62 (2000)

29. O’Gorman, L.: The document spectrum for page layout anal-
ysis. IEEE Trans. Pattern Recognit. Mach. Intell. 15, 1162–
1173 (1993)

30. Okada, T., Takasu, A., Adachi, J.: Bibliographic component extrac-
tion using support vector machines and hidden Markov models.
In: Proceedings of the ECDL, pp. 501–512 (2004)

31. Parmentier, F., Belaïd, A.: Logical structure recognition of sci-
entific bibliographic references. In: Proceedings of the ICDAR,
pp. 1072–1076 (1997)

32. Pavlidis, T., Zhou, J.: Page segmentation and classification. Graph.
Models Image Process. 54, 484–496 (1992)

33. Peng, F., McCallum, A.: Accurate information extraction from
research papers using conditional random fields. In: Proceedings
of Human Language Technology Conference, pp. 329–336 (2004)

34. Reis, D.C., Golgher, P.B., Silva, A.S., Laender, A.F.: Automatic
web news extraction using tree edit distance. In: Proceedings of
the WWW, pp. 502–511 (2004)

35. Sebastiani, F.: Machine learning in automated text categoriza-
tion. ACM Comput. Surv. 34(1), 1–47 (2002)

36. Sutton, C., McCallum, A. : An introduction to conditional random
fields for relational learning. In: Getoor, L., Taskar, B. (eds.) Intro-
duction to statistical relational learning, MIT Press, Cambridge
(2006)

37. Takasu, A.: Bibliographic attribute extraction from erroneous ref-
erences based on a statistical model. In: Proceedings of the JCDL,
pp. 49–60 (2003)

38. Zhai, Y., Liu, B.: Structure data extraction from the Web based on
partial tree alignment. IEEE Tran. Knowl. Data Eng. 18(12), 1614–
1628 (2006)

39. Zou, J., Le, D., Thoma, G.R.: Structure and content analysis for
HTML medical articles: a hidden markov model approach. In: Pro-
ceedings of the DocEng, pp. 119–201 (2007)

40. Zou, J., Le, D., Thoma, G.R.: Extracting a sparsely-located named
entity from online HTML medical articles using support vector
machine. Proc. Document Recognit. Retr. 68150, P1–P10 (2008)

41. http://www.isiwebofknowledge.com/
42. http://scholar.google.com/

123

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://mallet.cs.umass.edu
http://www.isiwebofknowledge.com/
http://scholar.google.com/

	Locating and parsing bibliographic references in HTML medical articles
	Abstract
	1 Introduction
	2 Related work
	2.1 Related work on reference locating
	2.2 Related work on reference parsing

	3 Reference locating
	4 Reference parsing
	4.1 CRF for reference parsing
	4.2 Combining SVM and global rules for reference parsing

	5 Evaluation of reference locating
	6 Evaluation of reference parsing
	6.1 CRF-based method
	6.2 Method based on SVM and global rule correction
	6.3 Evaluation on FLUX-CiM data
	6.4 Discussion

	7 Summary
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

