
Graph Cut Based Automatic Lung Boundary Detection

in Chest Radiographs

Sema Candemir1, Stefan Jaeger2, Kannappan Palaniappan1, Sameer Antani2, and George Thoma2

Abstract— The National Library of Medicine (NLM) is de-
veloping a digital chest x-ray (CXR) screening system for
deployment in resource constrained communities. An important
first step in the analysis of digital CXRs is the automatic
detection of the lung regions. In this paper, we present a graph
cut based robust lung segmentation method that detects the
lungs with high accuracy. The method consists of two stages: (i)
average lung shape model calculation, and (ii) lung boundary
detection based on graph cut. Preliminary results on public
chest x-rays demonstrate the robustness of the method.

I. INTRODUCTION

Detecting the lung regions in chest x-ray images is an

important step of computer-aided diagnosis applications such

as tuberculosis or pneumoconiosis screening. Researchers

at the National Library of Medicine in collaboration with

Indiana University School of Medicine and Moi University

in Kenya, are developing a computer-aided system for tuber-

culosis screening using chest x-ray radiographs. One of the

important first steps of the system is to detect the lung regions

accurately in chest radiographs. In this paper, we present a

graph cut based robust lung detection system designed for

this project.

Processing of x-ray chest images poses some challenges.

For example, for lung segmentation, the strong edges at the

rib cage and clavicle region cause local minima for most

minimization approaches. Segmenting the lung apex is also

a nontrivial problem because of the changing intensity at

the clavicle bone. Additional challenges are segmenting the

small costophrenic angle, making allowances for anatomical

shape variations such as varying heart dimensions or other

pathology, and the x-ray imaging inhomogeneities. Figure 1

shows some of these variations in lung appearance.

Various methods have been applied to detect the lung

boundary on x-ray chest images [1], [2], [3], [4], [5], [6].

Shi et al. [1] classified these methods into four categories:

(i) rule-based ii) pixel-based iii) hybrid and 4) deformable

model-based methods. In this paper, we are presenting a

hybrid system to robustly detect lung boundaries.

A. System Overview

The system has two main stages. It first computes an

average shape model using training images. Then it uses a
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Fig. 1. Anatomical features in a chest x-ray and its variability. Challenges:
varying lung shape, strong edges of the rib cage, visible shape of the heart,
intensity variation around the clavicle bones and sharp corner at costophrenic
angle.

graph cut segmentation algorithm [7], [8] to detect the lung

regions with the help of the calculated shape model. Figure 2

illustrates the stages of the system.

Fig. 2. Proposed scheme to detect the lung boundary. The system consists
of two stages: Stage-I) Lung shape model computation. Top left: original
image, top right: calculated shape model by taking the average of training
masks. Stage-II) Lung boundary detection with a graph-based algorithm.
Bottom left: global binary segmentation, bottom right: calculated boundary
contour.

To compute an approximate shape model, we use training

images which are selected according to their shape similarity.

The average of all selected masks is used as an approximate

shape model for the observed patient lung image. The second

stage of the system detects the lung region with a segmen-

tation algorithm. We employ a graph cut algorithm which
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models the segmentation problem with an objective function

in terms of boundary, region, and shape model properties.

The algorithm computes a global binary segmentation by

minimizing the objective function. We tested the system on

a publicly available data set [9]. Preliminary results show

that the proposed system detects the lung regions robustly

on x-ray chest images.

In Section II, we describe the proposed system in detail.

Section III provides the description of the data set and

experimental results. Conclusions and future work are given

in Section IV.

II. THE PROPOSED METHOD

A. Stage-I: Average Lung Shape Model

Segmentation in medical imaging has challenges such as

poor contrast, distortions caused by the acquisition equip-

ment, and anatomical shape variations due to diseases. A

segmentation algorithm without a priori knowledge about

the objects may not produce satisfactory results on medical

images. In order to provide a priori lung location, we

incorporate a static lung shape model into the system.

We employ a set of training masks to learn the lung shape

model. Instead of using all training mask [6], we select the

training set based on a simple shape similarity measure in

order to increase the lung shape model accuracy. We first

calculate the intensity projection of the histogram-equalized

images in the vertical and the horizontal directions. Then we

measure the similarity of both projection distributions using

the average of the Bhattacharyya coefficient (Eq 1),

BC(I1, I2) =
1

2

∑

(
√

p1(x)p2(x) +
√

q1(x)q2(x)) (1)

where p1(x) and p2(x) are the horizontal projections, q1(x)
and q2(x) are the vertical projections of I1 and I2, respec-

tively, and x are the histogram bins of the projection vectors.

Fig. 3. Training images for the lung shape model step are chosen according
to the similarity of the lung shapes. Image similarity is calculated by
comparing horizontal and vertical projections.

Once the training masks are chosen, the approximate shape

model is calculated by taking the average of the selected

masks. The computed lung shape model is a probabilistic

model in which each pixel intensity is the probability of the

pixel being part of the lung field. (Section II-B.2 describes

the incorporation of the lung shape model into the graph

structure.)

B. Stage-II: Segmentation

The second stage of the system is detecting the lung

boundary of x-ray images using image properties and the

lung shape model from the previous section. A number of

different segmentation methods reported in the literature can

be used, e.g. [10], [11]. We perform image segmentation

using a graph cut method [7], [8], [12] and model the

segmentation problem with an objective function. The max-

flow min-cut algorithm [13] minimizes the objective function

to find the global minimum which corresponds to foreground

(fg) and background (bg) labeling of the pixels. This section

gives the details of the segmentation component of the

system.

1) Basic Terminology of Graph Cut: The graph cut

algorithm models computer vision labeling problems such

as segmentation and disparity estimation as energy min-

imization using an undirected weighted graph G = (V,E).

The set of vertices V represents the pixel properties such

as intensity; and a set of edges E connects these vertices.

The edge weights typically represent the spatial proximity

measure between vertices. The graph has two special vertices

(terminals) representing fg and bg labels. There are two types

of edges: (i) neighborhood edges denoted as {p, q}, where

p, q ∈ V model the boundary properties of objects; and

(ii) edges between terminals and pixels denoted as {p, S}
and {p, T}, where S and T represent the fg and the bg

terminals. The graph cut algorithm uses an objective function

that consists of a data and a smoothness term. The data term

forces the algorithm to produce a solution that is consistent

with the data (e.g. image intensities). On the other hand, the

smoothness term encourages the algorithm to favor a smooth

solution (e.g. assigning similar labels to neighborhood pix-

els). The edge weights between the terminals and the pixels

are integrated into the data energy term; the neighborhood

edges are integrated into the smoothness energy term of the

objective function. To minimize the objective function, we

compute the min-cut which partitions the graph into two

subgraphs such that each pixel is connected to either the

S or the T terminal, and thus is either labeled as fg or bg.

2) Objective Function: To formulate the objective func-

tion, we define the desired segmentation criteria such that:

(i) segmentation labels (e.g. fg/bg) should be consistent

with the image intensities of the lung; (ii) the neighborhood

labels should be consistent with each other; (iii) the resulted

segmentation should fit the calculated shape model. Let f =
{f1, ..., fp, ..., fP } be a binary vector whose components

fp correspond to fg/bg label assignments to pixels p ∈
P . The algorithm aims to find an optimal configuration

of f according to the specified constraints. Based on the

segmentation criteria, we define the objective function in

terms of boundary, region, and shape model properties of

the pixels as follows

E(f) = Ed(f) + Es(f) + Em(f), (2)

where Ed, Es and Em represent the data, smoothness and

lung model terms of the objective function respectively. In
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order to confine the segmentation labels to be close to the

image intensities, we formulate the edge weights between

terminal and pixels as follows

Ed(f) =
∑

p∈P

(E{p,S} + E{p,T}), (3)

E{p,S} = |Ip − IT |/Imax, (4)

E{p,T} = |Ip − IS |/Imax, (5)

where Ip denotes the intensity of pixel p, IS and IT are

the virtual intensities of object and background terminals,

and Imax is the maximum intensity value of the observed

image. We model the terminal intensities using our training

masks. E{p,S} and E{p,T} measure how well the assigned

labels fit to the image intensities. To ensure nearby pixels

have similar labels, we assign a high weight to neighborhood

pixels that have similar intensities. The boundary penalties

between pixel p and q are formulated as follows

Es(f) =
∑

p,q∈N

E{p,q} = exp(−(Ip − Iq)
2). (6)

We incorporated the shape information into the edge

weights between terminals and pixel p. Our lung shape model

is formed as a 2D array with the same size as the observed

image and contains the probabilities of the pixels being part

of the lung field. Let Prp indicate the probability of being

part of the lung for pixel p. The lung model energy can be

formulated as follows

Em(f) =
∑

p∈P

Prp. (7)

After formulating the objective function, the next step is

to compute the global minimum (min-cut) corresponding to

the optimal labeling configuration satisfying the formulated

constraints. We used a fast implementation of min-cut/max-

flow [13]. The global minimum separates the graph into

two subgraphs in which some pixels are connected to the

fg terminal and the other pixels are connected to the bg

terminal.

III. EXPERIMENTAL RESULTS

The system is evaluated on a data set of frontal chest

x-rays compiled by the Japanese Society of Radiological

Technology (JSRT) [9]. The set contains 247 chest x-rays,

among which 154 x-rays are abnormal and 93 x-rays are

normal. All x-ray images have a size of 2048x2048 pixels

and a gray-scale color depth of 12 bit. The JSRT set

is publicly available and has ground truth masks [4] for

performance evaluation of lung segmentation.

As an evaluation metric, we use Dice’s coefficient [14]

which is the overlap between the ground truth (GT) and the

calculated segmentation mask (S) (Eq.8).

dsc =
2|S ∩GT |

|S|+ |GT |
(8)

Figure 4 shows the visual quality of our segmentation

results for some sample x-rays. The green and red contours

represent the ground truth and the segmentation results

respectively. The quantitative results of all segmentations are

shown in Figure 5. Each marker in the graph represents the

dsc score of an x-ray image in the set. It can be seen that,

almost all scores (98.7% of all cases) are higher than dsc

= 0.80, which is for example sufficient to detect Pneumoco-

niosis [2]. The average dsc of the set is 0.91± 0.037.

Fig. 5. The dice similarity of each image in the JSRT set which contains
247 chest x-rays. Each marker in the graph represents the dsc score of an
x-ray image in the set.

The segmentation of an x-ray image with a resolution

of 1024x1024 takes about 8 seconds on a 2.27 GHz Intel

Core 2 Duo CPU and 3 GB memory. Min-cut/max-flow is

implemented in C++, and all other parts of our system are

implemented in Matlab.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a robust lung boundary detection

method that is based on a simple lung model calculation and

a graph cut segmentation algorithm. For our experiments, we

used a publicly available chest x-ray data set. We measured

around 91% segmentation accuracy for this set which is

comparable to the performance of state-of-the-art algorithms

(95%) [4] and human-observer scores (94%).

The proposed system calculates the lung models in a

simple and an effective way. However, x-ray chest images

contain variable lung shapes. Therefore, a static shape model

is not sufficient to describe the lung regions. The next step of

our work is to incorporate a dynamic shape model calculation

stage into the system. We are planning to employ an image-

based registration algorithm for this step. A dynamic shape

model will improve the boundary detection performance of

the system.

We will also evaluate the method on other x-ray data sets

to test its robustness on varying imaging parameters and

under the challenges identified earlier.
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Fig. 4. Segmentation results on JSRT x-rays. The green and red contours indicate ground truth and system segmentation results respectively.
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