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Abstract—The National Library of Medicine (NLM) has
developed People LocatorTM(PL), a Web-based system for family
reunification in cases of a natural or man-made disaster. PL
accepts photos and brief text meta-data (name, age, etc.) of
missing or found persons. Searchers may query PL with text
information, but text data is often incomplete or inconsistent.
Adding an image-based search capability, i.e., matching faces
in query photos to those already stored in the system, would
significantly benefit the user experience. We report on our face
matching R&D that aims to provide robust face localization and
matching on digital photos of variable quality. In this article, we
review relevant research and present our approach to robust near-
duplicate image detection as well as face matching. We describe
the integration of our face matching system with PL, report on
its performance, and compare it to other publicly available face
recognition systems. In contrast to these systems that have many
good quality well-illuminated sample images for each person, our
algorithms are hampered by the lack of training examples for
individual faces, as those are unlikely in a disaster setting.

I. INTRODUCTION

Natural or man made disasters can cause massive casualties
and separate loved ones from their families. For informa-
tion assistance in post-disaster family reunification, the Lister
Hill National Center for Biomedical Communications at the
National Library of Medicine (NLM) has developed a Web-
based based system called People LocatorTM(PL)[1], to which
photos and brief text meta-data (e.g. name, age, last known
location) of missing or found persons may be posted. Searchers
may query PL via a Web browser or via the ReUniteTMiOS
application, using textual information, but this data is often
incomplete or variable, e.g. due to variations in names or
their spelling. It would therefore be of a significant benefit
to provide an image-based search capability, i.e. by matching
faces in query photos to those already stored in the system.

This system is distinct from a face recognition system that
has prior multiple photos of an individual available to train
on. Rather, this system is designed on an information retrieval
framework which matches a query face image to those acquired
in a hospital or recovery camp following a disaster.

The FaceMatch (FM) task objective: given a person’s
picture (as a digital photo) find visually similar faces in the PL
database of pictures toward minimizing the manual browsing
time and effort.

There are many challenges to achieving this goal:

• Size of the database can be quite large. For example,
the collection of records from the Haiti earthquake
of 2010 is about 100, 000 records with over 15, 000
images.

Fig. 1. Challenging images for the modern face detection/matching systems

• No constraints on uploaded (query) pictures: they may
contain zero or more faces and face-like objects e.g.
cats/dogs/cartoon faces, as shown in figure 1

• Both query and database images could be of sub-
optimal quality due to:
◦ low resolution, as taken by older cameras, or

poorly scanned,
◦ noise from digitizing, compression, water-

marking,
◦ under- or over-exposed, under- or over-lit,
◦ partially occluded, turned-away, damaged

faces.
• Due to multiple reports of the same individual, the

database may contain many near-duplicate images.
• There may be inconsistency in face appearance be-

tween the database image and the query image, e.g.
due to facial hair, glasses, jewelry, or injuries sustained
in the disaster.

We have evaluated several commercial1,2 and open
source3,4 solutions to face detection and recognition, but
were unsatisfied with the results because most of them (to
work well) tend to require multiple shots of the same person
made with fairly high resolution cameras in controlled or
predictable environments. The images posted to and tracked by
PL database do not answer those requirements, and cause the
modern face matching systems to produce sub-optimal results.

Our FaceMatch R&D effort addresses many of the men-
tioned challenges. The PL system can now support:

1PittPatt - recently acquired by Google
2FaceSDK - http://www.luxand.com/facesdk/
3FaceL - http://www.cs.colostate.edu/facel/index09.php
4OSSK - http://www.openu.ac.il/home/hassner/projects/Ossk/



• near-duplicate image detection, grouping and removal,
• semi-automatic data-set annotation for faces and skin,
• robust to noise skin detection,
• accurate face detection,
• ensemble based combination of features for improved

face matching.

The resulting image retrieval system is geared towards face
detection and matching. It is equipped with robust image
processing techniques (helping normalize photographs and
detect near-duplicates), modern computer vision methodology
(for multiple face detection and matching), and information
retrieval machinery (for efficient, adaptive indexing) to address
the posed challenges.

II. RELATED WORK

In this section, we review some relevant research describing
the methods we drew upon and utilized in the implementation
of our FaceMatch system.

A. Image de-duplication

Image set de-duplication is one of the first stages in face
matching systems, as it helps reduce the dataset by removing or
grouping near-duplicate images. Following a disaster, people
seeking to report on (or search for) loved ones tend to upload
the same or a slightly modified (rotated, cropped, scaled, etc.)
copies of the same photo to various Web sites and systems.
These systems often collaborate to improve the chances of
finding missing people. The resulting (shared) data collection
is very likely to contain duplicate information which can result,
not only in poor quality matches, but also can considerably
slow down the matching process itself. Hence, it is desirable
to discard the redundant information and select the most
appropriate high-quality photos for the matching.

Jacobs et al.[2] present an fast and robust to scale
image/sketch matching method by constructing a 2D Haar
wavelet based image descriptor. The descriptor is fast to
compute, requires little storage for each database image, and
results in a similarity measure that improves significantly upon
the L1 or L2 metrics in discriminating the targets of fuzzy
image matches. It is also fast to compare and is robust to noise
and scale. It uses 128x128 YIQ color images[3] from which
only 40-60 most significant wavelet coefficients are needed for
computation. We noted that the method’s reliance on the Haar
wavelet makes the descriptor sensitive to image translation,
cropping, and rotation.

To address this sensitivity to affine transformations, one
could utilize the Steerable Pyramid [4], [5], [6], a linear multi-
scale, multi-orientation image decomposition that provides a
useful tool for robust image matching. The steerable pyramid
performs a polar-separable decomposition in the frequency
domain, thus allowing independent representation of scale and
orientation. More importantly, the representation is translation-
invariant (i.e., the sub-bands are aliasing-free, or equivariant
with respect to translation) and rotation-invariant (i.e., the sub-
bands are steerable, or equivariant with respect to rotation).
The primary drawback is that the representation is over-
complete by a factor of 4k/3, where k is the number of
orientation bands.

Chum et al.[7] propose two image similarity measures
for fast indexing via locality sensitive hashing. The proposed
method uses a visual vocabulary of vector quantized local
feature descriptors (SIFT) and for retrieval exploits enhanced
min-Hash techniques. They propose a way of exploiting
more sophisticated similarity measures that have shown to
be essential in object image retrieval. They focus primarily
on scalability to very large image and video databases. The
method requires a small amount of data need be stored for
each image. They show results on the TrecVid 2006 data set
which contains approximately 146,000 key frames, and also
on challenging the University of Kentucky image retrieval
database.

B. Face detection

The problem of robust face detection naturally arises in
many multimedia retrieval applications dealing with images of
human faces. It has been studied quite extensively over the
recent years and multiple on-line and off-line solutions to this
problem have been proposed [8], [9], [10], [11], [12], [13],
[14], [15].

Zhang and Zhang[13] provide a survey of recent advances
in face detection for the past decade, referencing the seminal
Viola-Jones face detector, as well as the various techniques
according to how they extract features (e.g. Haar-like, pixel-
based, binarized, generic linear, statistics-based, composite,
and shape) and what learning algorithms are adopted (e.g.
template matching, Bayesian, SVM, neural nets, and part-
based).

Viola and Jones [16], [10] introduced an object detec-
tion process that can be robust and efficient, if it is based
on the detection of features that capture some information
about the class to be detected. This is the case of Haar-
like features that encode the existence of oriented contrasts
between regions in the image. A set of these features can
be used to encode the contrasts exhibited by a human face
and their spatial relationships. Haar-like features are so called
because they are computed similarly to the coefficients in
a Haar wavelet transform. The OpenCV implementation of
this method works quite well for the web-cam quality (or
better) images making the real-time near-frontal up-right face
detection possible. However, the method often fails to detect
faces in unconstrained images partly because it is implemented
to be color-blind, taking no advantage of such image clues as
skin tone, which may be quite suggestive of the face presence
or absence.

Chhaya and Oates[17] present one of the successful at-
tempts to make unconstrained face detection possible for the
case of hospital patient triage, where face images exhibit a
great variety in pose, occlusion and skin tone. They noticed
that the standard face detection algorithms perform poorly on
triage images taken during disaster simulations, and proposed
an ensemble-based face detection method that combines ro-
bust skin detection (in Lab color space) with simple pattern
matching face detection techniques, and show that this consid-
erably improves the face detection accuracy (e.g. compared to
OpenCV) on an image set of about 100 patients. Our approach
goes deeper with the skin color detection by working with the
extended color space and using artificial neural net (ANN) to



classify skin pixels. We also handle larger datasets, all of which
are publicly available.

Hoffmann et al.[12] introduce a hierarchical classification
approach to face detection, where discrete Gabor jets (DGJ) are
used for extracting brightness-related features (for preliminary
classification), then a skin detection algorithm is employed,
showing that the use of color efficiently reduces the number
of false positives while maintaining a high true positive rate.
In comparison with the Viola-Jones Face Detector (VJFD)
this method shows higher correct classification rates. Our face
detection strategy (although not using DGJ) goes further and
attempts to recover some false negatives by locally enhancing
the likely skin patches for the VJFD to re-iterate.

Zhu and Ramanan[18] present a unified model for face
detection, pose estimation, and landmark estimation in real-
world, cluttered images. Their model is based on a mixtures
of trees with a shared pool of parts, showing that tree-
structured models may be effective at capturing global elastic
deformation, while being easy to optimize. The results on
standard face benchmarks and on “in the wild” annotated
dataset show how this system advances the state-of-the-art for
all three tasks in good accuracy, but may be rather slow and
admittedly adapted to high-resolution (80x80 or larger) faces.
It may be more precise than our method, but it tends to miss
many low resolution faces, that our system needs to work with.

C. Skin tone detection

Grayscale face detection can often be improved by robust
human skin tone detection. The literature typically distin-
guishes between region-based and pixel-based color detec-
tion methods for skin detection. In contrast to region based
methods[19] which consider both color information and loca-
tion information, pixel based skin classification methods [20],
[21], [22], [23] typically operate on individual pixels without
considering its spacial context. As a result, pixel based color
classification is more robust to the affine transforms and has
much lower computational complexity than the region based
alternative.

A number of well know color spaces (e.g. RGB, HSV,
LUV, Lab, YCbCr, etc.)[24] were considered for skin tone
classification in many experimental systems. More restrictive
methods use explicit skin definitions [25], [26], while others
estimate skin tone distributions from the available data. The
non-parametric methods estimate the color distribution by
histograms and build normalized lookup tables[21]. Some
other methods consider parametric models where the data
distribution is typically modeled by a Gaussian mixture[22].
We have also seen that machine learning solutions involving
SVMs or neural networks[20] perform very well at the skin
color detection task.

D. Face matching

Face matching in general conditions with some minimal
(one, seldom two) reference images is an open problem and is
an active area of research. Some promising methods have been
proposed over the years. Here we list a few that are relevant
to the problem we solve.

A SIFT-based energy minimization method described by
Luo et al.[27] serves as a general object matching framework,

but can be applied to face matching in general conditions as
well. This method has shown to be fairly robust to scale,
lighting and affine transforms. Although suitable for general
purpose object identification, its face matching performance
also appears quite promising. Our face matching approach
is similar because we are also using SIFT key points and
descriptors, but we are skipping the energy minimization
routine, which can slow down the query response; instead, we
are utilizing an ensemble of descriptors, which can be easily
parallelized.

Bay et al.[28] present a scale- and rotation-invariant interest
point detector and descriptor, coined as SURF (Speeded Up
Robust Features). It can be utilized for object and face match-
ing, and it appears to approximate or outperform previously
proposed object matching schemes (e.g. based on SIFT) with
respect to repeatability, distinctiveness and robustness, yet it
can be computed and compared somewhat faster. The method
relies on integral images for image convolutions, builds on
the strengths of the leading existing detectors and descriptors,
e.g. using a Hessian matrix-based measure for the detector,
and a distribution-based descriptor. We are utilizing the quick
SURF descriptor in our ensemble matching, also noticing the
matching benefits of using SIFT descriptors on SURF key
points.

Wolf et al.[29] presented an interesting approach to face
matching called the one-shot similarity kernel, using a special
similarity measure to produce some impressive face matching
results on e.g. Labeled Faces in the Wild (LFW) collection.
Given two vectors, their one-shot similarity score reflects the
likelihood of each vector belonging in the same class as the
other vector and not in a class defined by a fixed set of
negative examples. They showed that: (1) when using a version
of Linear Discriminant Analysis (LDA) as the underlying
classifier, this score is a Conditionally Positive Definite kernel
and may be used within kernel-methods (e.g. SVM), and (2) it
can be efficiently computed. We are not utilizing this method
in part because our approach is explicitly required not to use
any training.

Bolme et al.[30] introduced a real-time system for face
matching and labeling called FaceL that labels faces in live
video from a webcam. FaceL presents a window with a few
controls and annotations displayed over the live video feed.
The annotations indicate detected faces, positions of eyes,
and after training, the names of enrolled people. Enrollment
is video based, capturing many images per person. FaceL
distinguishes between a small set of people (e.g. 3-5) in fairly
uncontrolled settings and incorporates a novel incremental
training capability. The system is reported to run at about 10
frames per second on their hardware, but we are unable to
utilize it, since our approach is required to be training-less.

Zhou et al.[31] describe how to combine perceptual fea-
tures with diffusion distance for face recognition by incorpo-
rating spatially structured features into a histogram-based face-
recognition framework. While diffusion distance is computed
over a pair of human face images, the shape descriptions of
these images are built using Gabor filters that consist of a num-
ber of scales and levels, which enables the system performance
to be significantly improved, compared to several classical
algorithms. The oriented Gabor filters lead to discriminative
image representations that are then used to classify human



faces in the database. We are not utilizing this method because
it requires training, and Gabor filters are rather slow.

III. IMAGE REPOSITORY

Before any face/object detection or recognition takes place,
an image collection needs to be turned into a consistent
and annotated image repository. With our FaceMatch, we
primarily use image collection from disaster areas, such as
Haiti Earthquake (HEPL)[1]. The data-set consists of 15,000
mostly color, low quality images, some of which are shown
in figure 1. We developed several image processing tools for
it and use them to

• reduce the set by about 30% via identifying near-
duplicates and no-face images,

• identify and label faces and profiles as rectangular
regions, and

• localize skin and facial features (eyes, nose, mouth)
within the face regions.

We manually annotated 4000 HEPL images and found that
the majority of face regions are with the frontal views and
about 900 are with the profile views. The distribution of face
region dimensions is quite diverse. The average face diameter
is 40 pixels with a standard deviation of 28 pixels. The average
profile diameter was 50 pixels. For skin color, 7680 images
were selected and 33,431 from faces, arms, legs were manually
annotated resulting in a total of 13,113,994 pixels, of which
7,314,106 pixels were skin and 5,799,88 pixels were non-skin.

Fig. 2. Annotated images: face/profile (left) and skin (right) regions

Some additional annotation (e.g. ethnicity, age/group, gen-
der) is also possible with the GUI developed by us, as shown
in figure 2. This cross-platform desktop annotation tool aids
the annotator with semi-automatic face/profile detection, cor-
rection and annotation. The annotations repository is tracked
by a database, updated with the new information about existing
and new images, and used for improving face detection and
matching performance.

IV. NEAR-DUPLICATE IMAGE DETECTION

The raw image data-set typically contains many duplicate
images due to multiple postings of the same photograph.
Such duplicates (or near-duplicates) need to be identified and

collected in bunches that would be represented by the highest
quality images in the groups.

Strict duplicate images can be identified with high confi-
dence by comparing their checksums or hash codes. However,
some images depicting (nearly) the same scene posted to
the image repository could come from the same source (e.g.
digital photograph), but be cropped, resized or re-compressed.
We define such images as near-duplicates and report on our
efficient method of locating and grouping them. Each group
of near duplicate images needs to be represented by its best
member, e.g. image with the highest resolution and lowest
noise.

We process the list of image files sequentially. For each
input image, we compute its image descriptor and separate a
candidate image from a group of similar processed images. A
candidate image is one which meets the following criterion: the
lowest matching distance with its peers (where the matching
distance is below a specified tolerance) and has the highest
resolution of the group of images. We could add other criteria
(e.g. minimum noise) later. On completion of this process each
group of near duplicates would be represented by its champion.

We use an efficient content-based image retrieval technique
developed by Jacobs et al.[2] that provides fast image matching
procedure that is robust to image noise, compression and
scale. By this method, all images in the source data-set
would be represented by their Haar wavelet based descriptors.
In our implementation, we use 60 most significant wavelet
coefficients.

V. SKIN LOCALIZATION

Skin localization is a strategy for improving the existing
face detection methods due to the fact that human skin lies in
a specific color range[21]. However, skin detection methods
often face many more challenges, e.g. surfaces with skin-like
tones, lighting conditions, make-up, specular reflection due to
moisture, camera settings, etc.

Researchers have been studying various color spaces[24]
for skin detection over the last couple of decades. However, the
existing skin detectors [20], [21], [22] are typically limited to
using a single color space. In our skin classification framework,
we include attributes of several color spaces in a single
composite feature vector, which is built by concatenating the
color band values in a composite color vector.

In our method, we compute pixel color values over several
commonly used color spaces, e.g. XYZ, RGB, Lab, CYMK,
NTSC, HSV, Luv, and YCbCr [20], [21], [22]. We apply
non-linear injection of the sampled RGB color into a high-
dimensional extended color space, which provides for a more
robust skin tone clustering, highly effective feature analysis,
and subsequent skin tone classification. We studied concate-
nating color representations for our face detection needs on
unconstrained mixed quality images. The optimal combination
was determined to be [RGB, HSV, Lab], spanning over 9-
dimensional extended color space (ECS).

To classify the pixels into skin and ¬skin (non-skin), we
studied several methods.



(a) (b) (c)

Fig. 3. Representation of skin color in (a) RGB space, (b) BKS space
∈ [1 : 16]3 and (c) BKS space ∈ [1 : 32]3.

A. Color histograms

Color histograms represent the underlying skin tone distri-
bution in a specific color space [22], [21]. The color space is
quantized and the histogram provides a probability distribution
of the color in the image as

P (ci) =
count(ci)

N
(1)

where ci gives the count of the ith component of color c,
while N is the total number of color data points used. These
probabilities correspond to the likelihood that a given color
belongs to skin. The classification into skin and ¬skin is
based on a comparison of the likelihood to an empirically
defined threshold. The main advantage of this method is
its computational speed, as only some indexing operations
and a comparison is necessary. By its nature, the method
does not presume any type of predefined distribution for the
skin colors, as may be the case for the parametric statistical
classification. However, this approach requires a substantial
amount of training data for realistic look-up tables (LUT).

To overcome the drawback related to the thresholds for
each dimension of the input space, a more sophisticated
histogram was built, similar to the Behavior Knowledge
Space[32], but instead of counting the votes coming from
different classifiers, we count the frequency of a given input to
fall into a specific bin of the space. In our case, the classifiers
are represented by the different bins where the color values
should be distributed, as shown in Figure 3. The threshold for
the decision was reduced to one single value, selected based
on many trial runs. The size of the spheres in Figure 3b and
Figure 3c represent the likelihood of a given input to be skin.

B. Parametric distribution modeling

Let x = [x1, x2, . . . , xm]
T denote the input vector describ-

ing an input pixel in the extended color space (ECS). Assuming
that the skin tones are approximately normally distributed in
ECS, we can write the likelihood of a pixel color coming from
a skin region as

d(x) = exp{−a(x− µ)T Σ−1(x− µ)} (2)

where µ denotes the mean vector and Σ stands for the co-
variance matrix estimated from the training skin pixels, and a
is a positive distribution bandwidth factor chosen experimen-
tally. Thresholding d(x) at some level θ ∈ [0, 1] classifies the
pixel as skin or non-skin. For our choice of a = 0.25, we set
θ = 0.5.

Fig. 4. The artificial neural network architecture for skin classification in
RGB color space.

The main advantage of this method is its low computational
complexity, and good computing speed. The main limitation
of the method is the assumption of normal distribution of skin
tone potentially limiting its generalization power, but given our
skin color distribution (as in Figure 3), we can assume the skin
tone normality in our experiments.

C. Artificial neural net (ANN) classifier

A more sophisticated method for skin color detection
involves a neural network that can learn a skin likelihood map
considering skin and non-skin pixels. A fully connected multi-
layer perceptron (MLP) based artificial neural network (ANN)
with one hidden layer is proposed to model the decision surface
in the color space, as shown in Figure 4. The input layer
corresponds to the number of color components describing the
analyzed pixel, while the output layer contains two neurons
(units) to distinguish between skin and non-skin.

The number of units in the hidden layer was set experi-
mentally to 16. Based on our experiments it was found that
doubling the number of neurons in the hidden layer compared
to the input layer provides the most accurate scores. A speed
constraint was also considered in order to provide a fairly fast
decision - an absolute necessity for an interactive system.

While a statistical decision (by parametric or non-
parametric models) is a fairly simple (and fast) procedure,
the neural net solution adapts its weights during each epoch5

invoking back-propagation learning strategy, which can assure
a certain optimum. In our experiments, α = 0.02 (learning
rate) and β = 0.08 (momentum) were considered.

VI. FACE LOCALIZATION

Robust and reliable face detection and localization capabil-
ity in digital photographs is the function of central importance
to the described system. It is one of the first critical steps
in toward the end goal of face matching. It is used in many
modules including spurious image removal, localizing faces
for annotations and matching, presentation of the results. Face
detection and localization is one of the first critical steps of our
face matching system. Its key challenges are the low resolution,

5a step in the training process of an artificial neural network



low quality images that are likely in an unconstrained image
acquisition situation.

Given a set of images, the system needs to inspect each
of them for the presence of human faces in near-frontal and
partially turned (profile) views. The detected face regions need
to be associated with their images and recorded to the database
for the subsequent face matching task. It is imperative that
the face detection subsystem should allow for effective visual
analysis of the detected faces and profiles via a simple GUI
that displays both, the image being analyzed and the detected
face/profile regions. The GUI needs to allow the user to
correct the automatic face detection mistakes by removing the
erroneous face/profile regions and providing the correct ones,
possibly with some meta-information about the subjects, such
as age, gender, ethnicity, or name, if available. The resulting
system should be robust to the scale, shift and rotation of the
presented face regions.

We use the object detector in OpenCV for face detection
has been initially proposed by Viola and Jones[10], [16],
working with Haar-like features as in Figure 5. This classifier
can be applied to a region of interest in an input image. A
search window is internally used to analyze image subregions
to find faces. The classifier is designed so that it can be easily

Fig. 5. Haar-like features [docs.opencv.org]: vertical (1.a, 2.a-b), horizontal
(1.b, 2.c-d), diagonal (1.c-d, 2.e-h), central (3.a-b).

rescaled in order to be able to find the objects of interest at
different sizes, which is more efficient than resizing the image
itself. Hence, to find an object of an unknown size in the given
image, the scan procedure should be done several times at
different scales.

Our face detector is equipped with two major cascade
classifiers: one is for detecting frontal face views, and the
other is trained to detect the profile views. We apply them
sequentially and record the results of both, even if some
detected regions overlap. The classifiers assume faces to be in
close to vertical positions is limited to detect vertically oriented
faces, which may not be always the case for some pictures in
our data-set. To overcome this limitation we provide an option
to automatically consider image πk/2 angle rotations, where
k = 0, 1, 2, 3. In addition to the face/profile detectors, we also
provide an option to detect commonly found facial elements,
such as glasses, eyes and nose-mouth regions, which might be
useful for computing features in the face matching stage.

The skin tone helper module, described earlier is a cru-
cial part of the FaceFinder system. Only sufficiently large
connected skin regions are considered for processing. The
remaining image regions are enhanced for contrast based on
the skin likelihood of each pixel (providing a lighter tone
for the skin and a darker tone for the background) and
cropped after padding from the original image and fed into the
face localizer again to identify new possible faces not found
originally by the system. The benefits of this approach are:
a) it can discover new faces originally missed by the system,
and b) it can overrule some previous false decisions. Use of
the face detector has resulted in improved face localization
accuracy, as our experiments show.

VII. FACE MATCHING

Face matching queries can be posed to the system after the
face/profile regions in the image collection are localized and
their descriptors are indexed. The face matching method needs
to be robust to accommodate wide variations in the appearance,
and it needs to be fairly exact to eliminate numerous false
positives. When the system is provided a query image with
a face, its goal is to localize that face and then match it
against the repository of faces that were indexed by the face
descriptors, and output a sorted list of most similar faces in
the similarity descending order. The matching technique cannot
assume that many faces of the same subject are present in the
database, and it needs to be robust to illumination, scale and
affine transformations.

We experimented with several promising object/face
matching techniques, such as One-Shot Similarity Kernel by
Wolf et al.[29], SIFT-based energy minimization method called
SoftCBIR described by Luo et al.[27], SURF-based descriptors
by Bay et al.[28], and ORB-based descriptors by Rublee at
al.[33] as a compromise between SIFT and SURF. The most
promising method for our needs turned out to be the SIFT-
based descriptor. We adapted its OpenCV implementation by
computing the SIFT descriptors on the cropped faces that
were extracted by our face detector. Both stages (detection and
matching) work with intensity images. We tested our method
on HEPL and Labeled Faces in the Wild (LFW) data-sets
and were sufficiently encouraged by the outcomes that we
decided to integrate our adaptations of SIFT, SURF and ORB
descriptors into the PL system for face matching needs.

Having several image descriptors per face (HAAR, SURF,
SIFT, and ORB), we experimented with similarity distance-
based and similarity rank-based feature combination strategies.
The distance-based combinations used individual distances di
and weights wi:

weighted distance product d =
∏
di

wi with the constituent
distances and their weights typically in [0, 1]

decreasing confidence radical d =

√
d1
√
d2 . . .

√
dn with

d1 being the most confident (heaviest) distance

The rank-based combination procedure implemented a
weighted variant of Borda count[34], so that the candidates
rank-based points are multiplied by the descriptor weights.



Fig. 6. FaceMatch module scheme

VIII. SYSTEM

As mentioned before, the PL system allows searching
record collections on missing persons using text queries.
The FaceMatch (FM) extension of the system adds a visual
modality to the search. With FaceMatch integrated into PL,
information seekers are able to search the database by text
and/or image queries. An image would typically start its
journey through the FaceMatch module in the FaceMatch Host
service that would extract the whole image features (for near-
duplicate detection) as well as the facial features (for face
matching). As schematically shown in figure 6, the extracted
image and face descriptors could optionally be indexed by the
FM DB Feature Index to answer subsequent visual queries
that result in matching image lists, ordered by the descending
similarity. The output of the Face Match module is then
optionally fused with the text query results and the overall
output list is presented to the user. The user is free to browse
the PL database by inspecting the details of the retrieved
records and optionally re-submitting queries using the retrieved
faces as examples.

The core FaceMatch (FM) imaging code is written in
portable C++, and for the web service integration purposes
it is packaged as a shared library. This provides a suitable
architecture to enable its use over the Web as a Web service,
as this appeared an industry standard for exposing services
in a platform agnostic way. The integration efforts exposed
the native binary to a managed, garbage collected .NET
environment by wrapping the core FaceMatch library with a
C++ binary interface using the COM/ATL technology stack.
A run-time callable wrapper now maps the types of the .NET
run-time to the native types recognized by the C++ DLL and
marshals the passed data and the returned results between the
managed and the native environments.

A key focus during the integration was to ensure the top
performance across all image descriptor basic operations, e.g.
list, ingest, query and remove. We provided the design to take
advantage of the industry trend toward multi-core architectures
by exploiting task level and functional parallelism inside all
critical modules. For instance, the Web service is capable of
servicing multiple queries while performing an ingest or a
deletion. The modules use the .NET task parallel library, as
well as OpenMP and its synchronization constructs.

IX. EXPERIMENTS

This section gives a description of the data sets we used in
the different experiments, the evaluation protocols we followed
and the results we obtained running different modules of the
system.

TABLE I. WHOLE IMAGE MATCHING ACCURACY RESULTS USING
HAAR WAVELET METHOD UTILIZED IN NEAR-DUPLICATE DETECTION

Distortion Recall Precision F-score
rotation 0.69 0.62 0.65
crop 0.71 0.70 0.71
scale 0.99 0.99 0.99

A. Near duplicates detection

The near-duplicate detection capability of the system was
tested first on our HEPL data set. The collection contains over
15,000 images gathered during different real disaster events.
People tend to upload the same or very similar photos several
times thus producing redundant data. Some 6,000 images were
found as being duplicates or near-duplicates. This reduction of
the collection to 65% of the original size allowed to speed-up
our queries roughly by the factor of two. The evaluation was
based on visual inspection as there was no annotation available
for this image collection at the time.

For a more precise evaluation, we have also experimented
with synthetically generated distortions of the original images
introducing 792 near-duplicates from a set of 132 unique
images by scaling (by the factors of 0.5 and 2), rotating (by
the angles of ±π/12) and cropping (by the factors of 0.9
and 0.75) the original images. Table I exhibits the results for
full image matching using the Haar wavelet based method
used in near-duplicate detection. We have discovered that our
near-duplicate detector is most sensitive to rotations, then
to cropping, missing quite a few of those, while detecting
most of the scaled near-duplicates correctly. This behavior was
expected, given the Haar wavelet’s nature of the detector.

B. Face localization

For localization purpose we have considered a large va-
riety of image collections. We selected from the previously
mentioned HEPL data collection different subsets containing
500, 1881 and 4, 000 images, respectively. These images
contain a large variety of faces in unconstrained environments,
containing small and large faces alike. Some of them are
over-exposed, blurry or occluded as shown in Figure 1. For
direct comparison purpose we also considered the well-known
Caltech face collection6 containing some 450 images of 27
different persons.

Comparing the results in Table II achieved on different
image data collections, we can state that the Viola-Jones
face detector (VJ) originally designed to deal with gray-
scale images can radically be improved by the skin color
information. Our skin detection step not only helps to reduce
the number of unlikely faces, but it also can help recover faces
which were originally missed by the baseline detector. For
the Caltech dataset, the ANN based skin detector considerably
improves the precision, while keeping the original high recall
rate, hence significantly improving the F-score. This may be
due to the fact that on Caltech image collection, the original VJ
detector often gets confused by the cluttered background, and
the ANN skin map drives it to the true faces. For the different
HEPL collections there is always a certain gain either on the
recall or precision which shows us that by using the appropriate

6http://www.vision.caltech.edu/html-files/archive.html



TABLE II. FACE DETECTION SCORES (PRECISION, RECALL, F-SCORE)
ON DIFFERENT DATA SETS USING A BASELINE SYSTEM (VJ), DIFFERENT

SKIN IMPROVEMENT BASED SYSTEMS (VJ+SKINSTAT, VJ+SKINANN AND
VJ+SKINHIST), LEADING OPEN SOURCE SYSTEM (ZHU-RAMANAN[18])

AND COMMERCIAL SYSTEMS (IOS[35], FACESDK[36]).

Data Method Recall Precision F-score
HEPL-500 VJ 0.76 0.87 0.81

VJ+SkinStat 0.77 0.89 0.83
VJ+SkinANN 0.81 0.84 0.82
VJ+SkinHist 0.71 0.87 0.78
iOS 0.68 0.87 0.76
FaceSDK 0.73 0.87 0.79
Zhu-Ramanan 0.33 0.92 0.49

HEPL-4000 VJ 0.45 0.81 0.58
VJ+SkinStat 0.47 0.82 0.60
VJ+SkinANN 0.51 0.81 0.63
VJ+SkinHist 0.44 0.82 0.57
iOS 0.42 0.88 0.57
FaceSDK 0.47 0.86 0.60

HEPL-1881 VJ 0.39 0.77 0.51
VJ+SkinStat 0.35 0.78 0.49
VJ+SkinANN 0.38 0.76 0.51
VJ+SkinHist 0.33 0.78 0.47
iOS 0.29 0.75 0.42
FaceSDK 0.33 0.75 0.46

Caltech VJ 0.95 0.88 0.91
VJ+SkinStat 0.97 0.97 0.97
VJ+SkinANN 0.98 0.97 0.98
VJ+SkinHist 0.90 0.68 0.80
iOS 0.97 0.98 0.97
FaceSDK 0.96 0.94 0.95
Zhu-Ramanan 0.97 0.97 0.97

skin map, we can recover originally not seen faces as well to
discard non-faces.

When comparing our face localization to those of other
face detection systems, such as iOS[35] and FaceSDK[36], it
was found that on HEPL-1881 dataset FaceFinder has a higher
accuracy than iOS or FaceSDK. On HEPL-1881 FaceFinder
also had a better precision and recall than the other two
face detection systems, as Table II illustrates. We noticed that
on the high quality Caltech faces, VJ+SkinANN improves
considerably recall and precision of the base VJ, and shows
most accurate face detection performance compared to other
open-source and commercial engines.

C. Face matching

For the face matching experiments, we considered a data
post-disaster collection (HEPL-4000) and the Caltech faces
data. Due to the nature and source of our target image
collection (HEPL), we do not posses different pictures from
the same person. A sample visual query result are shown
in figure 7, and we can see how the system retrieves the
faces similar to the query in the similarity descending order,
observing the clear score gap after the self match. Since HEPL-
4000 does not contain multiple photos of the same person
(aside from the near-duplicates), the self-match accuracy score
was naturally 1.

A more realistic test scenario for the FaceMatch was to
consider the Caltech data where different pictures of the same
subjects can be found. For that purpose, we normalized the
detected faces to 128x128 pixel patches and combined the
matching power of different descriptors (HAAR, SIFT, SURF
and ORB) using our three combination techniques described
earlier. The results shown in Figure 8 provide a clear view
on the quality of the different combination techniques. The
distance radius based queries for threshold values d ∈ [0, 1]

Fig. 8. FaceMatch result on the Caltech data considering different feature
representations combined by weighted distances (DIST), Borda count re-
ranking (RANK) and decreasing confidence radical (MANY).

(0 = exact match) appear to peak around 0.2 for RANK and
DIST, which indicates the good ensemble re-ranking power,
where individual descriptors would usually peak between 0.6
and 0.8, as MANY reflects. The peak matching accuracy,
however, appears to be in the top-20 match queries for all
combination strategies at about 0.74 for MANY. For the lower
resolution 64x64 pixel patches, the highest top-20 F-score
was 0.65, achieved by the DIST combination, which boldly
suggests that the face resolution plays an important role in the
matching phase, allowing to detect more key points and better
match their descriptors in high resolution faces. However, in
our current post-disaster datasets (e.g. HEPL), the majority of
the pictures are low-resolution containing small faces.

To study individual face descriptor matching performance,
we performed additional experiments with a 62 image an-
notated subset of HEPL images, considering the artificial
variations: scale (factors 0.75 and 1.25), cropping (factors
0.75 and 1.25) and rotation (angles ±π/12), ending up with
a total of 372 variations of the original faces. The F-score
accuracy figures shown in table III were obtained in leave-
one-out experiments. This experiment showed the robustness

TABLE III. FACE MATCHING RESULTS ON SYNTHETIC HEPL-372

method HAAR SIFT SURF ORB MANY DIST RANK
accuracy 0.67 0.91 0.88 0.71 0.97 0.96 0.86

of the SIFT descriptor to the different affine transformations.
We also need to mention that the extraction of the SIFT key
points and their descriptors is the slowest among the rest of
the descriptors. HAAR was the fastest, but the least accurate
out of them. ORB was also fast, but not as accurate as SIFT
or SURF. Out of the three combination strategies, MANY was
the champion, significantly more accurate than the best of the
individual descriptors.

Considering the results for the HEPL-4000, the Caltech
and HEPL-372 data set, we conclude that even though SIFT
descriptors are the most accurate in our experiments, the
matching based on SURF may be a realistic compromise
between SIFT and ORB in terms of speed and accuracy. We
also observed that with the correct descriptor ordering, the
decreasing confidence radical (MANY) combination method



Fig. 7. FaceMatch sample visual query results on the HEPL-4000 data. Similarity computed as (1-distance).

can significantly outperform the most accurate individual de-
scriptor in the radius-based retrieval. The weighted DIST-
ance approach can compete with MANY without descriptor
ordering constraints, while the re-RANK-ing was too much
affected by the accuracy lacking HAAR and ORB descriptors.

X. CONCLUSION

With an aim to add the image based query capability in
the People LocatorTM(PL) [1] system, we researched and de-
veloped several image matching and face recognition methods,
evaluated a few state-of-the-art systems on existing datasets,
developed a software library for: image near-duplicate detec-
tion (based on Jacobs et al.[2] work), face detection (based on
Viola-Jones[10] work) and face matching (using a combination
of SIFT, SURF, ORB and Haar descriptors), and developed
Web services to allow PL to use the FaceFinder and FaceMatch
software.

The major features that distinguish our face matching
system from the majority of the available face recognition
systems include:

• it works with unconstrained images with no prior
knowledge of resolution, lighting or head pose,

• it is training-less, i.e. no training data available before
face matching takes place, and

• it provides an end-to-end image/face match solution
that can be deployed on desk-top and over the Web

We have developed the technology that exceeds in accuracy
and speed many current open source and commercial solutions.
Our 15,000 PL image dataset was reduced by about 30% by
detecting image near-duplicates and no-face pictures, which
helped dramatically reduce the overall query turn-around time.
The PL image repository was also partially annotated with the
correct face/profile locations and facial features (eyes, nose,
mouth) using the desk-top and web-based annotation tools
calling our FaceMatch library.

We have made several important improvements to the
methods with regards to accuracy and speed, and our major
technological contributions hence include:

Haar wavelet matching has been adapted to perform two
functions: near-duplicate detection and image/face match-
ing, using different thresholds and coefficient weights for
each application. Besides fast and robust image set de-
duplication, this method allows for quick whole-image
and face-patch queries, but in its current form it is quite
sensitive to cropping and rotation.

Face detection was improved by using human skin tone
information, locating and enhancing skin tone regions
that are fed as the input to the default (color-blind)
face detection algorithm. The skin regions were located
using the traditional statistical techniques (using mean and
covariance of the skin colors in RGB, HSV and Lab), as
well as via training an artificial neural network (ANN).
The skin region enhancement was implemented similarly
to the white point balancing algorithm. On several PL
subsets, our face detector was more accurate than the
available state-of-the-art engines, both commercial[36],
[35] and open-source[10], [18].

Face matching utilized a descriptor ensemble approach to
face matching to optimize the matching accuracy. Both
distance- and rank-based weighted query result combi-
nation were utilized. Increasing the weight of the strong
descriptors while diminishing the weaker ones typically
improves the matching accuracy beyond any individual
descriptor matching accuracy by 5-10% in our experi-
ments on the PL data.

The developed face matching cross-platform tools are com-
piled into a portable FaceMatch library and are being inte-
grated into the PL system through the Web services. We have
annotated 4000 images in the PL dataset with face/profile
locations as well as the facial features for large enough faces.
This annotated dataset can be made available via the National
Library of Medicine. Our team is actively engaged in research
and development that lead to

• robust facial feature location,
• dense/coarse feature point based face/object matching,
• user-friendly web-based front-end for flexible image

query/browsing.

More tests are needed to improve the visual face/profile
matching performance, and more annotated data-sets are also



required to serve this goal. We are currently looking at efficient
means of image annotation, which may include development
of more convenient visual annotation tools, and use of crowd-
sourcing for developing more comprehensive testing and eval-
uations data sets.
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