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Abstract. Cervical cancer is one of the most common types of can-
cer in women worldwide. Most deaths of cervical cancer occur in less
developed areas of the world. In this work, we introduce a new image
dataset along with ground truth diagnosis for evaluating image-based
cervical disease classification algorithms. We collect a large number of
cervigram images from a database provided by the US National Can-
cer Institute. From these images, we extract three types of complemen-
tary image features, including Pyramid histogram in L*A*B* color space
(PLAB), Pyramid Histogram of Oriented Gradients (PHOG), and Pyra-
mid histogram of Local Binary Patterns (PLBP). PLAB captures color
information, PHOG encodes edges and gradient information, and PLBP
extracts texture information. Using these features, we run seven classic
machine-learning algorithms to differentiate images of high-risk patient
visits from those of low-risk patient visits. Extensive experiments are
conducted on both balanced and imbalanced subsets of the data to com-
pare the seven classifiers. These results can serve as a baseline for future
research in cervical dysplasia classification using images. The image-
based classifiers also outperform results of several other screening tests
on the same datasets.

1 Introduction

Cervical cancer ranks as the second most common type of cancer in women aged
15 to 44 years worldwide [1]. Among death cases caused by cervical cancer, over
80% occurred in less developed regions. Therefore, there is a need for lower cost
and more automated screening methods for early detection of cervical cancer,
especially those applicable in low-resource regions. Screening procedures can
help prevent cervical cancer by detecting cervical intraepithelial neoplasia (CIN),
which is the potentially precancerous change and abnormal growth of squamous
cells on the surface of the cervix. According to the WHO system [1], CIN is
divided into three grades: CIN1 (mild), CIN2 (moderate), and CIN3 (severe).
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Lesions in CIN2/3+ require treatment, whereas mild dysplasia in CIN1 only
needs conservative observation because it will typically be cleared by an immune
response in a year. Thus, in clinical practice one important goal of screening is
to differentiate CIN1 from CIN2/3 or cancer (denoted as CIN2/3+ [2]).

The most widely used cervical cancer screening methods today include the
Pap test, HPV testing, and visual examination. Digital Cervicography, a non-
invasive visual examination method that takes a photograph of the cervix (called
a cervigram) after the application of 5% acetic acid to the cervix epithelium, has
great potential to be a primary or adjunctive screening tool in developing coun-
tries because of its low cost and accessibility in resource-poor regions. However,
one concern with Cervicography is that the overall effectiveness of Cervicogra-
phy has been questioned by reports of poor correlation between visual lesion
recognition and high-grade disease as well as disagreement among experts when
grading visual findings. To address the concern and investigate the feasibility of
using images as a screening method for cervical cancer, we conjecture that com-
puter algorithms can be developed to improve the accuracy in grading lesions
using visual (and image) information. This conjecture is inspired and encour-
aged by recent successes in computer-assisted Pap tests such as the ThinPrep
Imaging System (TIS) [3], FocalPoint [4], and the work by Zhang et al. [5]; these
computer-assisted Pap tests apply multi-feature Pap smear image classification
using SVM and other machine learning algorithms, and they have been shown to
be statistically more sensitive than manual methods with equivalent specificity.

In this work, we describe our efforts of building a dataset of multiple features
extracted from cervigram images along with patient diagnosis ground truth based
on worst histology. We also present some baseline results of applying seven clas-
sic machine-learning algorithms to differentiate patient visits that are high-risk
from those visits that are low-risk, using cervigrams. We train binary classifiers
to separate CIN1/Normal and CIN2/3+ images. All the classifiers are trained
and tested on the same datasets, with a uniform parameter optimization strat-
egy. They are then compared by ROC curves and other evaluation measures.
Moreover, we compare the performance of cervigram based classifiers with Pap
tests and HPV tests results on the same datasets.

2 The Image Data Set for CIN Classification

Here we introduce a dataset for image-based CIN classification, built from a
large medical data archive collected by the National Cancer Institute (NCI) in
the Guanacaste project [6]. The archive consists of data from 10,000 anonymized
women, and the data is stored in the Multimedia Database Tool (MDT) devel-
oped by the National Library of Medicine [7]. In the archive, each patient typ-
ically had multiple visits at different ages. During each visit, multiple cervical
screening tests including Cervicography were performed. The Cervicography test
produced two cervigram images for a patient during her visit and the images were
later sent to an expert for interpretation.

In our dataset, we collected 345 positive (CIN2/3/cancer) patient visits and
767 negative (CIN1/Normal) patient visits from NLM’s MDT. The ground truth



28 T. Xu et al.

diagnosis (i.e. the CIN grade) for each patient visit is based on the Worst His-
tology result of the visit. Multiple expert histology interpretations were done
on each biopsy; the most severe interpretation is labeled the Worst Histology
for that visit in the database. Then, for each patient visit, we take the pair of
cervigram images for that visit, and extract three types of features from the
images: the Pyramid histogram in L*A*B* color space (PLAB) feature, the
Pyramid Histogram of Oriented Gradients (PHOG) feature, and the Pyramid
histogram of Local Binary Patterns (PLBP) feature. The PLAB feature captures
color information; the PHOG feature encodes edges and gradient information;
and the PLBP feature extracts texture information. More details about the
PLAB-PHOG-PLBP features and their extraction process can be found in [8].
For each image, after feature extraction, the total length of the concatenated
PLAB-PHOG-PLBP feature is 2,538. Note that there are two images from each
patient visit, which are visually similar but not identical. We have to avoid using
one image for training while the other image is being used for testing. Thus we
construct two separate image datasets, D1 and D2, and randomly assign one
image of a visit to D1 and assign the other image from the same visit to D2. D1
and D2 are used separately in experiments, and each set contains 345 images
from positive visits and 767 images from negative visits.

Our image dataset along with the ground truth diagnosis for each image
can be used as a new image feature benchmark to evaluate automated cervical
dysplasia (i.e. CIN) grading or classification algorithms.

3 Seven Classifiers for Comparison

On the cervigram image benchmark datasets introduced above, we compare
seven classic machine learning methods, including random forest (RF), gradient
boosting decision tree (GBDT), AdaBoost, support vector machines (SVM),
logistic regression (LR), multilayer perceptron (MLP), and k-Nearest Neighbors
(kNN). Some of them, such as SVM, have been widely used in the field of medical
image analysis [9–12], while others, like random forest and GBDT, are witnessing
applications only in the recent few years [13]. In the literature, there have been
other works that aim to compare classifier performances on benchmark datasets.
Morra et al. [9] compared AdaBoost with SVM while Osareh et al. [10] compared
SVM with neural networks. In both papers, the comparisons were done between
two classifiers. In the work by Wei et al. [11], more classifiers were studied, but
excellent ensemble methods like RF and GBDT were not included. In this paper,
we conduct a comprehensive comparison of seven popular classifiers. Next, we
will briefly introduce each of them.

Random Forest (RF) is an increasingly popular machine learning method [14].
It builds an ensemble of many decision trees trained separately on a bootstrapped
sample set of the original data. Each decision tree grows by randomly selecting a
subset of candidate attributes for splitting at each node. We optimize parameters
for RF by searching the number of trees in {10, 100, 200, 500, 1000, 2000} and
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searching the subset size of features for node splitting among {‘sqrt’, 100, 200,
500, 1000, 2000} where ‘sqrt’ is the square root of the whole feature size.

Gradient Boosting Decision Tree (GBDT) is a kind of additive boosting
model which, in general, can be expressed as function (1)

f(x) =
M∑

m=1

βmb(x; γm) (1)

where β is called expansion coefficient, serving as the weight of the tree in each
iteration, and b(x; γ) are usually simple basic functions, e.g. decision tree, char-
acterized by parameters γ. Details for the training process of GBDT can be
found in [14]. We optimize the parameters for GBDT by searching the number
of trees among {10, 100, 200, 500, 1000, 2000} and the learning rate in {1, 0.1,
0.01, 0.001, 0.0001}.

Adaboost is a classic boosting tree model [15]. It has the form H(x) =∑
t αtht(x), which can be trained by minimizing the loss function in a greedy

fashion. An optimal weak classifier ht is selected for each training iteration t.
We use shallow decision trees (i.e. stumps) as the weak learners. In the final
strong classifier H(x), the weight of the weak classifier ht(x) is αt, which is
inversely proportional to the classification error of ht(x). To optimize parame-
ters for AdaBoost, we search the depth (d) of each decision tree in {1, 2, 3, 4}
and the number of weak classifiers from 10 to the whole feature size with an
increment of 120/d.

Multilayer Perceptron (MLP) is a feedforward neural network. MLP
uses layerwise connected nodes to build the architecture of the model. Each
node(except for the input nodes) can be viewed as a neuron with a nonlinear
activation function. In this paper, we use the sigmoid function(2) as the activa-
tion function,

σ(x) =
1

1 + exp(−(w ∗ x + b))
(2)

where the weight vector w and bias vector b in each layer pair are trained by the
Back Propagation algorithm. We also introduce L2 regularization weight decay
to prevent overfitting. We optimize hyperparameters for MLP by searching the
hidden layer size in {2, 3}, the hidden unit size in {0.0625*m, 0.125*m, 0.25*m}
where m is the feature size 2538, and searching the weight decay strength among
{0.0005, 0.0001, 0.00001, 0.0}.

Logistic Regression is a type of probabilistic statistical classification model.
For the binary classification problem, with labeled sample set {(xi, yi)}Ni=1, it
computes the positive probability by (3) and the model parameter θ is trained
to minimize the cost function(4).
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P1(xi) =
1

1 + exp(−θT ∗ xi)
(3)

L(θ) = − 1
N

[
N∑

i=1

yilogP1(xi) + (1 − yi)log(1 − P1(xi)] (4)

In our experiments, we use the batch gradient descent algorithm with L2
regularization to train the model. The strength of regularization is searched
from 10−5 to 105, with an increment of 1 for the exponent.

Support Vector Machines (SVM) is one of the most widely used classifiers
in medical image analysis [2,5,9,10]. It performs classification by constructing
a hyperplane in a high-dimensional feature space. It can use either linear or
non-linear kernels, and its effectiveness depends on the selection of kernel, the
kernel’s parameters, and the soft margin parameter C. Linear SVM is widely used
because it has good performance and fast speed in many tasks. In this paper,
we also choose to use the linear SVM; we did try nonlinear kernels such as the
radial basis functions (RBF) but they are time consuming and did not improve
performance in our task. For linear SVM, we need to optimize the parameter C.
Let C = 2m, we search m in the range [-8, 9] with a step increment of 1.

k-Nearest Neighbors (kNN) is one of the simplest classifiers, which classifies
a new instance by a majority vote of its k nearest neighbors. In this paper, we
use the Euclidean distance metric to find the k nearest neighbors. We search the
optimal k value for our task in the range [1, 50] with a step increment of 1.

4 Experiments

In Section 2, we described the construction of two cervigram image datasets, D1
and D2, where each one contains 345 images from positive (CIN2/3+) patient
visits and 767 images from negative (CIN1/normal) patient visits. Note that the
datasets are imbalanced, i.e. they contain more negative cases than positive cases.
Since many classification methods assume a balanced distribution of classes and
require additional strategies to handle imbalanced data, we apply undersampling
to the negative visits and randomly choose 345 negative visits from each dataset.
The resulting two balanced datasets, Dbal

1 and Dbal
2 , use all 345 positive visits

and the randomly selected 345 negative visits.
We conduct experiments to compare the seven classifiers described in

Section 3, on the two balanced datasets Dbal
1 and Dbal

2 , and on the two larger
imbalanced datasets, D1 and D2. The classifier implementations we use are from
well known open source libraries. Our Random Forest, GBDT, and LR classi-
fiers are implemented with scikit-learn [16]; the MLP classifier is provided by
pylearn2 [17]; the SVM is offered by Libsvm [18]; the AdaBoost is provided by
Appel et. al. [15]; and the kNN classifier is provided by the implementation in
MATLAB.

We perform the same ten-round ten-fold cross validation using these seven
classifiers. On each dataset, we randomly divide the samples (cervigrams) into
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(a) ROC curves on Dbal
1 (b) ROC curves on Dbal

2

Fig. 1. ROC curves on balanced datasets Dbal
1 and Dbal

2 .

ten folds. In the ten rounds, we rotationally use one fold for testing and nine
folds for training. On the training set, we use a uniform strategy, Exhaustive Grid
Search [18], to search for the optimal parameters of each classifier. Three cross
validations are used in the parameter searching process. The exact parameters
and search ranges for each classifier are discussed in the Section 3.

The results of the ten rounds are used to draw ROC curves. We compare
different classifiers by analyzing their ROC curves, areas under ROC curves
(AUC), and accuracy, sensitivity and specificity values at the point where the
probability threshold is 0.5. We also compare the results of our image-based
classifiers with several other screening tests results, obtained for the same visits
that are used to construct our datasets.

4.1 Results on Balanced Datasets

In our first set of experiments, we compare seven classifiers on the balanced
dataset Dbal

1 and Dbal
2 . The comparison results are shown in Fig. 1 as ROC

curves and in Table 1 with overall AUCs, and accuracy, sensitivity and specificity
values at the default probability threshold 0.5. The ROC curves illustrate that
the three ensemble-tree models— RandomForest (RF), GBDT, and AdaBoost—
outperform other classifiers. AUCs in Table 1 also show that the ensemble-tree
models have a better overall performance. At the 5% significance level, there is no
difference between RandomForest, GBDT and AdaBoost. On Dbal

1 , for instance,
the p value is 0.0708 by paired t-test between RF (1st rank) and AdaBoost (3rd
rank). However, these three ensemble-tree classifiers are significantly better than
all other classifiers. On Dbal

1 , the p value is 0.0062 and 1.7191 ∗ 10−4, by paired
t-test between RF (1st rank) and SVM (4th rank), and between RF and kNN
(lowest rank), respectively. We conjecture that the ensemble-tree models perform
best because they are more robust to over-fitting than other models such as SVM
and MLP when dealing with scalar data sets that are not too large.
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Table 1. Overall AUC and accuracy (accu), sensitivity (sensi) and specificity (speci)
at the default threshold on the balanced dataset Dbal

1 and the imbalanced dataset D1

Dbal
1 D1

Classifier AUC(%) accu(%) sensi(%) speci(%) AUC(%) accu(%) sensi(%) speci(%)

RF 84.63 80.00 84.06 75.94 84.83 78.24 67.54 83.05
GBDT 83.35 78.55 82.03 75.07 82.28 77.07 62.61 83.57
AdaBoost 82.23 76.81 77.68 75.94 82.53 76.44 57.97 84.75
SVM 78.95 74.78 76.52 73.04 79.82 74.37 46.67 86.83
LR 77.99 74.20 76.23 72.17 79.99 75.45 54.20 85.01
MLP 77.14 75.27 77.78 72.75 78.60 76.53 59.13 84.35
kNN 73.00 70.87 75.07 66.67 74.38 71.67 48.12 82.27

(a) ROC curves on D1 (b) ROC curves on D2

Fig. 2. ROC curves on imbalanced datasets D1 and D2.

4.2 Results on Imbalanced Datasets

We also conduct the same ten-round ten-fold experiments on the imbalanced
datasets D1 and D2. The results are shown in Fig. 2 and Table 1. One clear
difference between results on the imbalanced datasets and those on the balanced
datasets is that, at the same default threshold, all seven classifiers give higher
specificity values and lower sensitivity values on the imbalanced dataset (see
Table 1, right column). This is expected since in the imbalanced datasets, there
are more negative samples than positive samples, thus when penalizing equally
errors on samples from any class and training to minimize the overall classifi-
cation error, the classifiers trained on the imbalanced data become biased to
the class with a majority of samples. Interestingly, since higher specificity is a
desired property for a clinical test meant for screening, training classifiers on
the imbalanced dataset (which more closely reflect the true underlying patient
distribution) can be beneficial.

Moreover, Fig. 2 shows that the overall ROC curves and AUCs on the imbal-
anced datasets are similar to that on the balanced datasets. Although more
samples are used to train classifiers on the imbalanced datasets, the overall per-
formance by the classifiers did not seem to improve.
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4.3 Cervigram Based RandomForest (RF) vs. Pap and HPV Tests

In this experiment, we first compute the average result of our image-based clas-
sifier RF to represent its visit-level performance on balanced and imbalanced
datasets, respectively. We then compare the visit-level result of RF with Pap
and HPV tests results, which are available for the same visits that are used to
construct our datasets. As illustrated in Table 2, on both datasets the image-
based RF classifier outperforms every single Pap test or HPV test at specificity
around 90%.

Table 2. Comparing visit-level sensitivity (sensi) and specificity (speci) of image-based
RF classifier with that of Pap tests and HPV tests.

Balanced dataset Imbalanced dataset

Method sensi(%) speci(%) sensi(%) speci(%)

Alfaro ThinPrep 20.69 81.82 20.69 85.27
Cytyc ThinPrep 49.55 88.46 49.55 89.77
Costa Rica Pap 39.42 88.12 39.42 89.31
Hopkins Pap 36.00 97.11 36.00 97.13
HPV16 33.82 94.19 33.82 92.94
HPV18 08.16 97.97 08.16 98.17

Cervigram based RF 51.00 90.00 49.00 90.00

5 Conclusions

In this paper, we present a new benchmark dataset for evaluating cervical dys-
plasia classification or grading algorithms. Both image features and ground truth
diagnosis are included in the dataset. It is our intention to publish1 the original
datasets D1 and D2, sample images and the source code for PLAB-PHOG-PLBP
image feature extraction. We will also add information from other screening tests
such as Pap and HPV and expand the size of the dataset in the future.

In our experiments, we adopt a uniform experimentation and parameter opti-
mization framework to compare seven classic machine learning algorithms in
terms of their performance in classifying an image into either CIN1/Normal
(i.e. low-grade lesion/healthy) or CIN2/3+ (i.e. high-grade lesion/cancer). The
reported results can serve as a baseline for future comparisons of automated cer-
vical dysplasia classification methods. From the results, we find that ensemble-
tree models—Random Forest, Gradient Boosting Decision Tree, and AdaBoost—
outperform other classifiers such as multi-layer perceptron, SVM, logistic regres-
sion and kNN, on this task. This finding is consistent with the conclusion in other
works [19]. Another finding is that, training and testing on the larger imbalanced
dataset (containing more negative samples) give similar overall performance
(measured by AUC and accuracy) to that on the balanced dataset (with equal

1 Download from http://www.cse.lehigh.edu/∼idealab/cervitor

http://www.cse.lehigh.edu/~idealab/cervitor
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number of negative and positive samples). However, the results on the imbal-
anced dataset have higher specificity than sensitivity whereas the results on the
balanced dataset have higher sensitivity.
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