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In biomedical documents/publications, medical images tend to be complex by nature and often
contain several regions that are annotated using arrows. In this context, an automated arrowhead
detection is a critical precursor to region-of-interest (ROI) labeling and image content analysis. To
detect arrowheads, in this paper, images are ¯rst binarized using fuzzy binarization technique to
segment a set of candidates based on connected component (CC) principle. To select arrow
candidates, we use convexity defect-based ¯ltering, which is followed by template matching via
dynamic time warping (DTW). The DTW similarity score con¯rms the presence of arrows in the
image. Our test results on biomedical images from imageCLEF 2010 collection shows the interest
of the technique, and can be compared with previously reported state-of-the-art results.
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1. Introduction

1.1. Motivation

Essential information is often conveyed succinctly through graphical illustrations
and ¯gures/images in biomedical publications. Medical images tend to be complex by
nature, and are often annotated with graphical overlay pointers, such as arrows and
asterisk. Medical researchers often use these pointers to highlight meaningful regions-
of-interest (ROIs) (see Figs. 1 and 2), while minimizing distractions from other less
relevant regions. Additionally, they are often referred to ¯gure captions and men-
tioned in the paper. Therefore, detecting arrows could help identify meaningful ROIs
and annotate them with the concepts appearing in the biomedical text.5,6 In Fig. 1,
we provide a complete scenario of the project where the importance of the arrow is
highlighted. This paper improves on prior work in arrow detection toward meeting
this goal in image content analysis.

Fig. 1. Using NLM's open-i image retrieval search engine (url: https://openi.nlm.nih.gov), the illustra-
tion highlights the importance of using arrow in biomedical images (i.e. its location pointing ROI and
relationship between the texts and ROI).

(a) (b) (c)

Fig. 2. Three examples showing di®erent types of arrows pointing speci¯c image regions. These are taken
from published biomedical papers (see Fig. 1). Arrow types can be just a triangle (i.e. a regular arrowhead)
or with straight and curved tail. In addition, their intensities vary with respect to the background.
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1.2. Related work

We ¯nd that there are few techniques reported in the literature to detect overlaid
arrows. Existing methods rely on sparse pixel vectorization, segmenting text-like and
symbol-like objects, and global or local thresholding.

Dori and Wenyin8 proposed a technique to detect arrows based on sparse pixel
vectorization.7 The concept relies on the cross-sectional runs (or width runs) of black
image regions (assuming arrow in black). These runs represent the line at intervals
along the tracking direction and records the middle points of these sections. The
points are then used to construct vectors. The vectorization process results in many
thick short bars from the arrow heads that are then used to make a decision. The
technique utilizes an interesting application but is limited to machine printed line
images. Features such as eccentricity, convex area and solidity has been used to
detect arrows, but the current techniques are limited to regular arrows (i.e. straight
arrows showing left, right, top and bottom).16 Additionally, the method uses pre-
de¯ned threshold to avoid small objects and noise. Cheng et al. use text-like and
arrow-like objects separation, assuming that arrows are shown in either black or
white color with respect to the background.2 From the binary image, arrow-like
object separation employs a ¯xed sized mask (after removing the small objects and
noise as in Ref. 16), which are then used for feature computation such as major and
minor axis lengths, axis ratio, area, solidity and Euler number. A recent study uses a
pointer region and boundary detection to handle distorted arrows,25 which is fol-
lowed by edge detection techniques and ¯xed thresholds as reported in Refs. 23
and 24. These candidates are used to compute overlapping regions, which are then
binarized to extract the boundary of the expected pointers.

Fundamentally, edge-based arrow detection techniques are limited by the weak-
edge problem.2,16,25 No matter how robust the arrow detection techniques are, hard
thresholding (either global or local) is one of the primary reasons for failure. This
means that a hard threshold cue often weakens the decision in pointer detection. For
edge detection in binary or grayscale images, most state-of-the-art methods use
classical algorithms like Roberts, Sobel and Canny edge detection. Template-based
methods are limited since they require new templates to train new images. Also, it
may be necessary to re-evaluate the threshold values when new images are used.
Edge-based techniques are still considered since sampling points can be remarkably
compact compared to solid regions, especially when broken boundaries are recover-
able. In biomedical images, one of the major issues for a broken boundary is the
nonhomogeneous intensity distribution, where pointers overlap with content.
According to Hori and Doermann,11 broken lines can be recovered when gaps are
small but, in practice, they are often inaccurate.11

1.3. Contribution outline

Our method (OM) can be summarized as shown in Fig. 3. It relies on a grayscale
fuzzy binarization process at di®erent levels, since straight forward thresholding may
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not work (see Sec. 3). Similar to previously reported work,22 candidates are seg-
mented based on connected component (CC) principle. These candidates are ¯ltered
using hull convexity defect-based technique. This step helps prune artifacts (or un-
wanted noisy CCs) and store arrowhead-like candidates. Next we perform template
matching using dynamic programming (i.e. dynamic time warping (DTW)) to
con¯rm whether the candidate is an arrowhead. In our assessment, an arrow is said
to be detected if their matching score exceeds an empirically set threshold.

In this paper, unlike the common state-of-the-art methods, OM uses four di®erent
levels of fuzzy binarization. This ensures that overlaid arrow candidates are not
missed. However, it may result in repetitions. We note that the primary variation in
an arrow appearance is due to its tail (shape and size). Therefore, OM limits itself to
just detecting arrowheads, which is the extension of the proceedings presented in the
imaging symposium 2016.20

The remainder of the paper is organized as follows. In Sec. 2, we explain OM in
detail, where it mainly includes binarization process (Sec. 2.1) and candidate selec-
tion (Sec. 2.2). Results are reported in Sec. 3, including a comprehensive state-of-the-
art comparison. In Sec. 4, we state conclusions and provide next-steps.

2. Method

2.1. Binarization

In biomedical images (see Fig. 2), arrows appear with either high or low intensity to
enhance their visibility in the image. In addition, in many cases arrows are blurred,
overlapped or surrounded by textured areas. In such contexts, typical binarization
tools that are based on ¯xed threshold values are unable to perfectly extract can-
didate regions. Therefore, we focus on an adaptive binarization tool, which is based
on a fuzzy partition of a two-dimensional (2D) histogram of the image, taking into
account the gray level intensities and local variations.4,3 Two-dimensional Z-func-
tion criteria based on the optimization of fuzzy entropy are then computed from

Fig. 3. Overall system work°ow in block format. Block-wise explanation can be found in Sec. 2.
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this histogram to automatically set the threshold.3 The Z-function employs two
kernels: low level and high level cuts, in addition to direct inversions. The latter issue
(image inversion) takes opposite image intensities into account. Altogether, four
di®erent binarized levels are processed, as illustrated in Fig. 4. In Fig. 4(a), arrow
candidates are encircled in both red and black (with respect to the background
color). The main idea of using four di®erent levels of binarization is not to miss the
overlaid arrows. Furthermore, deformed and/or distorted arrows can be discarded
since the arrows are repeated in other levels of binarization. In Fig. 4(b), some of the
arrows are repeatedly segmented. In contrast, straight forward thresholding tech-
nique (Otsu,15 for instance) may not be able to segment those arrows because of the
large intensity variations from one image to another.

From a pool of several candidates (see Fig. 4(b)), we are required to select arrow-
like candidates. In what follows, we describe a complete candidate selection process
in detail.

(a)

(b)

Fig. 4. (Color online) Fuzzy binarization (of Fig. 2(c)): (a) four di®erent levels (level 1 to level 4), where
the segmented arrows are encircled both in red and black with respect to the background color; and (b) a
collection of all segmented CCs including arrows (encircled in red).
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2.2. Candidate selection

Our candidate selection process is based on the characteristics of the arrowhead,
which can typically be represented by a triangle. Unlike the previously reported
work,22 we do not take tail information into account. One of the primary reasons is
that it may vary geometric signatures computed from extreme points of a triangle
(i.e. triplet) because tail structures tend to vary from time to time. Such a change will
a®ect overall appearance of the arrow (Fig. 5). After we detect arrowhead, we will
take the corresponding tail into account since both came from the same CC.

To detect an arrowhead, the following steps are carried out:

(1) convexity defect-based arrowhead candidate cropping; and
(2) arrowhead candidate matching with the templates.

2.2.1. Convexity defect-based arrowhead candidate cropping

To select arrow-like candidates, we apply hull convexity defect concept (see Fig. 6).
A set of points along the contour of the binary CC are de¯ned to be convex if it
contains the line segments connecting each pair of its points. In a convex combina-
tion, each point xi in the set S is assigned a weight or coe±cient wi in such a way that
the coe±cients are all non-negative and sum to one, and these weights are used to

Fig. 5. Examples showing the changes in tail structure. Further, an absence of the tail is also possible.

(a) (b) (c)

(d) (e)

Fig. 6. Arrowhead candidate cropping: (a) An arrow, (b) convex hull, (c) convexity defect, (d) a com-
plete convexity defect region and (e) arrowhead candidates.
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compute a weighted average of the points. For each choice of coe±cients, the
resulting convex combination is a point in the convex hull, and the whole convex hull
can be formed by choosing coe±cients in all possible ways. Expressing this as a single
formula, the convex hull is the set:

XjSj

i¼1

wixijð8i : wi # 0Þ ^
XjSj

i¼1

wi ¼ 1

( )

: ð1Þ

This means that the convex hull of a ¯nite point set S 2 Rn forms a convex polygon
when n ¼ 2. In Fig. 6(b), an example is shown. Using such a convex hull, we attempt
to remove the tail since their exists convex shaped silhouettes in both sides (see Fig. 6
(c)), which is computed by subtracting an original candidate from the convex hull. In
Fig. 6(d), the convexity defect region is shown, which is just a convex hull of both
convex shaped silhouettes. At the end, in Fig. 6(e), arrowhead candidate(s) is(are)
selected by subtracting an original image with the convexity defect region.

2.2.2. Arrowhead candidate matching with template

To con¯rm arrowhead candidates (see Fig. 6), we apply a template matching tech-
nique. We extract a feature along the contour and match with the prede¯ned tem-
plates using DTW technique. The arrowhead candidate is con¯rmed when the
similarity score crosses the empirically designed threshold.

Feature extraction. Along the contour, we have a set of coordinate points,

P ¼ fpigi¼1;...;n; ð2Þ

where pi ¼ ðxi; yiÞ. To extract feature vector (f), we compute the change in angle
with respect to x-axis from any consecutive pair,

f ¼ f!igi¼1;...;n; ð3Þ

where !i ¼ arctan yi%yi%1
xi%xi%1

! "
. This goes in a cyclic order either clockwise or anti-

clockwise but, following the trigonometry, we follow anti-clockwise traversal. In our
feature vector, continuous redundancy of !i can be possible, !i ¼ !iþj; j ¼ 1; . . . ;m;

where m ' n. Therefore, it is desired to express the contours of shapes with a few
representative pixels (called the dominant points). Through polygonal approxima-
tion,18,9,17 we represent a digital curve using fewer points such that the properties of
the curvature of the digital curve are retained. Next the geometrical properties like
in°exion points or concavities can be evaluated. Besides, to make it simple and
e®ective, we compute the di®erence between the angles and check whether it crosses
the threshold, ". The choice of " is usually user-de¯ned. This means we take !i if
j!i % !iþ1j ' " (in our case, " ¼ 0). Like most line ¯tting/polygonal approximation
(or dominant point detection) methods, it can be made nonparametric by using the
error bound due to digitization as a termination condition. Figure 7 shows three
examples, where the changes in angles are shown at all dominant points. To make the
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feature vector rotation invariant, one needs to follow either clockwise or anti-
clockwise to compute changes in angles.

Dynamic time warping. DTW allows to ¯nd the dissimilarity between two non-
linear sequences potentially having di®erent lengths.12,19 In Fig. 7, one can notice the
variations in feature vector from one arrowhead to another. Let us consider two
feature sequences:

f1 ¼ f!ig1¼1;...;n and f2 ¼ f#jgj¼1;...;m; ð4Þ

of size n and m, respectively. The aim of the algorithm is to provide the optimal
alignment between both sequences. At ¯rst, a matrix of size n(m is constructed.
Then for each element, local distance metric $ði; jÞ between the events ei and ej is
computed, i.e. $ði; jÞ ¼ ðei % ejÞ2. Let Dði; jÞ be the global distance up to ði; jÞ,

Dði; jÞ ¼ min

Dði% 1; j% 1Þ;
Dði% 1; jÞ;
Dði; j% 1Þ

2

64

3

75þ $ði; jÞ ð5Þ

with an initial condition Dð1; 1Þ ¼ $ð1; 1Þ such that it allows warping path going
diagonally from starting node ð1; 1Þ to end ðn;mÞ. The main aim is to ¯nd the path
for which the least cost is associated. The warping path therefore provides the dif-
ference cost between the compared signatures. Formally, the warping path is,

23.20

147.14

289.65

267.27

239.04

23.20

313.26

340.91

99.21

227.73
199.98

165.07

313.26

318.95

92.86

204.15

318.95

(a)

(b)

(c)

Fig. 7. Three examples showing a complete process (from left to right) starting from an original candi-
date (resulting from fuzzy binarization— see Fig. 4), arrowhead cropping (see Fig. 6) to feature extraction
after polygonal approximation.
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W ¼ fwkgk¼1;...;l, where maxði; jÞ ' l < iþ j% 1 and kth element of W is wði; jÞk 2
½1 : n* ( ½1 : m* for k 2 ½1 : l*. The optimized warping path W satis¯es the following
three conditions:

. boundary condition: w1 ¼ ð1; 1Þ and wl ¼ ½n;m*;

. monotonicity condition: i1 ' i2 ' + + + ' in and j1 ' j2 ' + + + ' jm; and

. continuity condition: wkþ1 % wk 2 fð1; 1Þð0; 1Þð1; 0Þg for k 2 ½1 : l% 1*:

Boundary condition conveys that the path starts from ð1; 1Þ to ðn;mÞ, aligning all
elements to each other. Monotonicity condition forces the path advances one step at
a time. Continuity condition restricts allowable steps in the warping path to adjacent
cells, and therefore it does not go backward. Note that continuity condition implies
monotonicity condition. We then de¯ne the global distance between f1 and f2 as,

"ðf1; f2Þ ¼
Dðn;mÞ

l
: ð6Þ

The last element of the n(m matrix gives the DTW-distance between f1 and f2,
which is normalized by l, i.e. the number of discrete warping steps along the diagonal
DTW-matrix. Overall, DTW measures the similarity between two sequences, and
can be summarized as follows.

(1) Thanks to DTW, noise in arrowhead (along the contour) does not let the cost to
go beyond the threshold. This means that some of the arrowheads with noisy
artifacts connected to them are still detected.

(2) If the cropped candidate is not actually an arrowhead, DTW results in high
cost.

Further, feature extraction and DTW matching techniques provide robustness to

the change in rotation. As an example, "( , ) = 0.00 and "( , ) =

0.00., where in both cases the second arrow is rotated by 30, and 120,, respectively.
It holds the same for image scaling (i.e. robust to scaling).

3. Experiments

3.1. Datasets, ground-truth and evaluation protocol

The well-known imageCLEF dataset14 is used for testing. It is composed of 298 chest
CT images. Each image is expected to have at least one arrow, and there are 1049
pointers, in total. For all images in the dataset, ground-truths of the pointers were
created and each ground-truth includes information like arrow type, color, location
and direction. For validation, for any given image in the dataset, our performance
evaluation criteria are precision, recall and F1 score,

precision ¼ m1

M
; recall ¼ m1

N
and
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F1 score ¼ 2
ðm1=MÞ ( ðm1=NÞ
ðm1=MÞ þ ðm1=NÞ

# $
; ð7Þ

where m1 is the number of correct matches from the detected set M and N is the
total number of pointers (in the ground-truth) that are expected to be detected.
Precision de¯nes whether the retrieved candidate is relevant (i.e. an arrow), and
recall de¯nes how relevant is the search.

3.2. Our result and analysis

Table 1 shows the performance evaluation scores in terms of precision, recall and F1

score. In the reported results, we prioritize the recall measure since we do not like to
miss arrow candidates. The method achieved F1 score of 91.09%. As mentioned in
Sec. 1.3, we also reported the results using Otsu thresholding15 in place of fuzzy
binarization. The results shown in Table 1 con¯rm the usefulness of fuzzy binar-
ization at four di®erent levels. Considering fuzzy binarization, it is important to note
that while checking with the ground-truths, we are able to segment 95.1% (recall
value) of arrows from our complete dataset. In contrast, we have a recall value of
84.81% from Otsu. This means that we have missed more than 15% of the arrows
during segmentation, which is not the case for fuzzy binarization.

Our method (OM1 in Table 1) is able to detect arrowheads regardless of their tail
structure. But, if the shape of the arrowhead is a®ected by noisy artifacts, the
proposed method fails. Figure 8 shows both examples: noisy artifacts that are con-
nected along the tail, and noisy artifacts that are connected with arrowhead. Also,
the method does not detect highly curved arrows since convexity defect-based ar-
rowhead cropping does not yield expected arrowhead candidates.

3.3. Comparative study

Further, the comparative study with state-of-the-art methods has been made. In this
comparison, our benchmarking methods are categorized into two groups:

(1) state-of-the-art methods that are specially designed for arrow detection; and
(2) common template-based method by using well-known state-of-the-art shape

descriptors.

Table 1. Performance (in %) of the proposed method.

Our Method Precision Recall F1 Score

OM1 88.50 93.80 91.09
OM2 68.21 74.32 71.13

Index
OM1: out method using fuzzy binarization3 (four dif-
ferent image levels).
OM2: our method using Otsu15 (single image level).
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3.3.1. Arrow detection methods

Four well-known methods from the state-of-the-art that are specially designed for
arrow detection are used:

(1) global thresholding-based method,2

(2) two edge-based methods,24,25 and
(3) a template-free geometric signature-based method.22

The results are provided in Table 2, where Santosh et al.22 performs the best with
precision, recall and F1 score values 93.14%, 86.93% and 89.94%, respectively. In our
comparison, to avoid biasing, these performance scores are taken from their pub-
lished articles.

3.3.2. Template-based methods

In case of template-based method, we created 11 templates (arrows) having di®erent
shapes (including sizes). The template size can further be extended in accordance
with the dataset. To extract shape features, we took the most frequently used shape
descriptors (in computer vision) from the state-of-the-art. They are

(1) generic Fourier descriptor (GFD),26

(2) shape context (SC),1

(a)

(b)

Fig. 8. Examples of when the proposed method succeeds and fails: (a) Noisy artifacts connected along the
tail do not a®ect the method and (b) they do largely a®ect when connected with arrowhead.

Table 2. Performance (in %) of the previously reported methods.

Previously Reported Methods Precision Recall F1 Score

Cheng et al.2 81.10 74.10 77.00
You et al.24 22.80 77.80 35.00
You et al.25 84.20 81.60 83.00
Santosh et al.22 93.14 86.92 89.94
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(3) Zernike moment (ZM),13

(4) R-transform (RT)10 and
(5) DTW-Radon.21

For these descriptors, it is important to ¯t the best parameters. In case of GFD,
one needs to tune the radial (4:12) and angular (6:20) frequency parameters to get
the best combinations. Note that such a best combination of radial and angular
frequencies can be di®erent from one dataset to another. For SC, we used the 100
sample points as reported in Ref. 1 by omitting smaller CCs. In case of ZM, we
applied 36 Zernike functions of order less than or equal to 7. For the Radon trans-
form, projecting range is ½0;%Þ. These shape descriptors are rotation-, scale- and
translation-invariant, and thus useful in our application since CCs are observed at
di®erent sizes, scales and directions. After extracting features, the main idea is to
rank the CCs from any studied image based on the order of shape similarity. In our
test, top-10 ranking has been implemented. Using this framework, results (precision,
recall and F1 score) are provided in Table 3. Among all shape descriptors, GFD
provides the best performance.

3.3.3. Best of the worlds comparison

In Fig. 9, we compare the best scores from three di®erent studies/results reported in
Tables 1–3. On the whole, considering such a dataset, the proposed method out-
performs the best state-of-the-start arrow detection method by more than 1% F1

Table 3. Performance (in %) of the template-based methods.

Template-Based Methods Precision Recall F1 Score

GFD26 75.10 78.33 76.68
SC1 68.30 71.40 69.82
ZM13 55.20 57.70 56.40
RT10 59.50 63.60 61.48
D-Radon21 62.10 65.30 63.65

GFD26

Santosh et al.22

OM

Fig. 9. Performance comparison. The highest scores are taken from all studies (see Tables 1–3).
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score, and the template-based (shape descriptor) method by more than 16% F1 score,
at the cost of low precision and high recall.

4. Conclusion and Future Work

In this paper, we have presented a new method to detect overlaid arrows in bio-
medical images. Images are ¯rst binarized via fuzzy binarization tool to segment a set
of candidates. To select arrow candidates, we use a hull convexity defect-based
arrowhead cropping, which is followed by template matching via dynamic pro-
gramming. In our assessment, (using imageCLEF 2010 collection), our results out-
performs the state-of-the-art methods.

To the best of our knowledge, this is the ¯rst time arrow detection has been done
without using tail information since variations in the shape and size of the tail change
an overall shape of the complete arrow. As our next steps, we plan to integrate
previously reported techniques (state-of-the-art methods) that can be used as pre- or
post-processing steps. Further, use of machine learning instead of using template-
based approaches, would be our immediate concern. Also, since the current work
does not use any color information (that could possible be appeared in biomedical
images), we plan to adopt them in our study.
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