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ABSTRACT 

We present a technique to annotate multiple organs shown in 2-D abdominal/pelvic CT images using CBIR. This 
annotation task is motivated by our research interests in visual question-answering (VQA). We aim to apply results from 
this effort in Open-iSM, a multimodal biomedical search engine developed by the National Library of Medicine (NLM). 
Understanding visual content of biomedical images is a necessary step for VQA. Though sufficient annotational 
information about an image may be available in related textual metadata, not all may be useful as descriptive tags, 
particularly for anatomy on the image. In this paper, we develop and evaluate a multi-label image annotation method 
using CBIR. We evaluate our method on two 2-D CT image datasets we generated from 3-D volumetric data obtained 
from a multi-organ segmentation challenge hosted in MICCAI 2015. Shape and spatial layout information is used to 
encode visual characteristics of the anatomy. We adapt a weighted voting scheme to assign multiple labels to the query 
image by combining the labels of the images identified as similar by the method. Key parameters that may affect the 
annotation performance, such as the number of images used in the label voting and the threshold for excluding labels that 
have low weights, are studied. The method proposes a coarse-to-fine retrieval strategy which integrates the classification 
with the nearest-neighbor search. Results from our evaluation (using the MICCAI CT image datasets as well as figures 
from Open-i) are presented. 

Keywords: multi-label image annotation, content-based image retrieval, abdominal CT  

1. INTRODUCTION

The National Library of Medicine’s (NLM) Open-iSM multimodal biomedical information search engine indexes Open-
Access biomedical literature, medical cases, and biomedical images. There are figures and images in the collection that 
are abdominal CT images. These images are often individual 2-D axial slice images which are selected from the original 
DICOM formatted volumetric data and converted to a regular JPEG or PNG formatted image with intensity range 
[0,255]. The appearance of abdominal CT slices is quite diverse with respect to the anatomical structure. To 
automatically annotate the anatomical structures contained in an abdominal CT figure, in addition to the visual content of 
the image, we could also use the relevant textual metadata, e.g., the figure caption and mention in the article, or the 
description in a medical case. In this paper, we present a method to assign organ labels to an image based on using the 
visual information alone. The question to which we hope to be able to answer by the computer is: given an axial 
abdominal CT image only, which organs are shown in this image? In prior work, we have reported our research results 
in automatically annotating/classifying images based on image type, body segment, and view. Organ annotation, the task 
in this paper, is a further/finer level of annotation. Unlike the annotation with respect to image modality, body segment, 
or image view which is single-label annotation and is usually treated as a classification problem, our organ annotation 
task is a multi-label annotation task which is more challenging. In addition to this, we also face challenges such as, 1) 
there is a limited amount of ground truth data (annotated images); 2) there are relatively large numbers of organ types 
which need to be identified; 3) some images only have subtle differences which are confined to small areas; 4) the 
contents in some images may vary significantly across the images (for example, the difference between the slices that are 
close to the thoracic cavity and the slices that are close to the pelvic cavity). Because of these challenges, instead of 
considering multi-label annotation as a classification problem, though some approaches have used deep learning for this 
[1] and other techniques use visual words to annotate tiled image subregions [2], we choose to tackle this task using
content-based image retrieval (CBIR) techniques. CBIR technology is used to find images similar in their visual
characteristics. The CBIR technique has been previously used for automatic image annotation [3-5]. The general idea is
to use CBIR to identify/retrieve a set of labeled images that are visually similar to a given unlabeled query image, and to
annotate this unlabeled image using labels/annotations from visually similar labeled images. To the best of our
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To assess the performance of annotation, we compare the extracted labels with the ground truth labels for each query 
image in a test set. Specifically, we calculate the following values:  

 ܰ௧_௦: the overall number of ground truth labels for all the query images;  
 ௦ܰ௬௦௧_௦: the overall number of extracted labels for all the query images;  
 ܰ௦௦_௦: the overall number of missing labels (a label that is one of the ground truth labels but not one of 

the extracted labels for a query image);  
 ܰ௫௧_௦: the overall number of extra labels (a label that is one of the extracted labels but not one of the 

ground truth labels for a query image);  
 ܰ௨௬_௪௧_௦௦_௦	: the number of query images that have at least one missing label;  
 ܰ௨௬_௪௧_௫௧_௦	: the number of query images that have at least one extra label;  
 ܰ௨௬_௪௧_௦௦_ௗ_௫௧_௦ : the number of query images that have at least one missing label and one 

extra label. 
All above values are then divided by the total number of query images ( ܰ௨௬). Smaller values of  ܰ௦௦_௦, 

ܰ௫௧_௦ , ܰ௨௬_௪௧_௦௦_௦	 , ܰ௨௬_௪௧_௫௧_௦	  , ܰ௨௬_௪௧_௦௦_ௗ_௫௧_௦	  with respect to the 
value of ܰ௨௬ indicate better performance. Two important parameters that may affect the annotation performance are K, 
the number of retrieved images, and ܶ, the threshold value for excluding labels that have low weights. 
 
2.6 Coarse-to-fine image retrieval method 
 
Generally speaking, the type of organs and the number of organs in an image slice are related to the location of the slice 
in the body (along the z-direction). We propose a coarse-to-fine retrieval strategy aiming to approximate the slice 
location and use it in retrieval. This strategy consists of two steps. It first coarsely classifies the query image into one 
body segment and then finds the most similar images among those images which are in the same body segment. This is 
the approach we use in the experiments for improving system performance. For example, in Experiment 2 (Section 3.2), 
for the abdominal dataset, the slices ordered from the bottom to top in the z-direction are broadly divided into 4 
consecutive body groups based on whether the images contain certain organs. The features of the slices in each group are 
extracted and used to train a supervised classifier. The data used to train the classifier consists of all the slices in the 
retrieval database (none from the query database). Additional details on this method are provided in Section 3.2. 

3. EXPERIMENAL RESULTS AND DISCUSSION 

To analyze and evaluate the performance of the proposed annotation method, we carry out several experiments using 
different query image databases and retrieval image databases. In Experiment 1, the query image database and the 
retrieval image database are identical and contain all of the labeled slices from the abdomen CT or the pelvic CT datasets; 
for each query,  the query image is excluded from the retrieval database. The PHOG feature and nearest-neighbor (NN) 
search strategy on the entire dataset are used in Experiment 1. The results demonstrate the high performance of this 
approach (PHOG + NN) for this experiment. In Experiment 2, the images in the query set and the retrieval set are from 
different patients. As expected, the performance of the approach (PHOG + NN) is worse than that in Experiment 1. To 
improve the performance, we examine the effect of using different parameters for PHOG, and we test additional features 
such as SPCEDD and GIST. We also compare this method to the proposed coarse-to-fine retrieval method. Experiment 3 
provides preliminary results on the performance of this technique on figures in Open-i which are more diverse and more 
dissimilar to the labeled dataset. 
 
3.1 Experiment 1 
 
Figure 3 shows the retrieval and annotation results for one example abdominal slice image. For this case, the number of 
retrieved images (K) is set to 10, and the threshold value (ܶ) for excluding labels that have low weights is set to 50%. 
The ground truth labels for this query image are right kidney, left kidney, gallbladder, liver, aorta, inferior vena cava, and 
pancreas. The annotation labels output by the system have one missing label (gallbladder). Although 5 images out of 10 
have gallbladders, the overall voting weight for label gallbladders is less than the threshold T (50%) because the voting 
also considers the similarity ordering of the images, and those 5 images are not among the top 5 returned images. As 
shown in Figure 3, this case demonstrates the challenges and complexity of our task, such as: there are subtle differences 
between images, the regions that need to be labeled may be quite small and hard to identify, the number of regions to be 



annotated is relatively high, and the shape of regions changes across the images. For this parameter setting (K = 10 and T 
= 0.5), on average, each query image has 5 or 6 labels, the system’s annotation for each image contains 5 or 6 labels, and 
the number of missing labels or extra labels for each image is either 0 or 1. We also examine the annotation performance 
with respect to the effects of parameters K and T. Figure 4(a) shows the values of annotation performance measures 
plotted against the increasing value of the number of retrieved images K (from 1 to 25) for a given value of T (= 50%) 
for abdomen data. Generally speaking, the performance gets worse with increasing K, which indicates more dissimilar 
images are taken into consideration for annotation. It also implies that the retrieval performance is very good, as the 
higher the rank of the returned image, the more similar the image is. The figure also demonstrates the tradeoff between 
the number of missing labels and the number of extra labels. Figure 4(b) plots the values of annotation performance 
measures with the increasing value of the threshold T for the label voting (from 0.1 to 0.8) for a given value of K (= 10) 
for abdomen data. As shown by Figure 4(b), selecting the value about 0.5 for T is a good choice, which may be 
consistent with our intuition. We carry out the same experiment for the cervix dataset also. For most of the cases, the 
annotations are accurate. The above analysis on parameters K and T based on the abdomen data is also applicable to the 
cervix data. Compared to the results of abdominal data, the performance on the cervical data is better. It is probably 
because of two factors: 1) the number of labels to annotate in cervix data is fewer than that of abdomen data (4 vs. 13); 2) 
there are more variance and complexity shown in the images of abdomen data than in the images of cervix data. 
 

 
Figure 3. Experiment 1: Annotation and retrieval result of one example abdominal image 

 



 
T = 0.5                         K = 10 

Figure 4. Experiment 1: annotation performance with respect to K or T (abdominal set) 
 
  
3.2 Experiment 2 

 
In this experiment, we separate images in the labeled abdominal dataset into two sets. One contains all the slices 
generated from the first 5 patients’ CT volumetric data. We use all the slices in this set as query images. The other 
contains all the slices obtained from the other 25 patients’ CT volumetric data. All the images in this set are used to 
annotate the query images. Thus, the images in the query database and the images in the retrieval database are from 
different patients. As a result, the visual differences between the images in the query database and the images in the 
retrieval database are larger than that in the Experiment 1. There are 427 images in the query database and 1723 images 
in the retrieval database for the abdomen data. Figure 5(a) shows the annotation performance using PHOG with respect 
to the number of retrieved images K, when the threshold value T is set to be 50%. Compared to the corresponding graphs 
in Experiment 1, the results are notably worse, which is expected. We may account for the differences between the 
content of two slice images with two factors: one is contributed by the inter-patient difference at similar body locations 
and the other is contributed by the inter-patient difference at different body locations. Ideally, the system will be tolerant 
of the former difference, but discriminative on the latter. However, we found this is very challenging to achieve, because 
the inter-patient differences at similar body locations are quite large. For example, Figure 6(a) shows the examples of the 
slice of different patients in which the right kidney (yellow) appears for the first/second time in the body slice stack 
(from top to bottom) (the second slice is shown instead if the right kidney is too small in the first slice). Among these 
example slices which are approximately located at the same body axial location on different patients, the shape, size, and 
location of each organ, the number of organs, the shape and size of the body, the shape, size and location of the non-
labeled regions such as bones, are all quite different. The same observation applies to the images in Figure 6(b), and (c).  
 
We have considered several approaches to improve the retrieval performance. For either classification or nearest 
neighbor searching, feature extraction is an important step. Therefore one of our efforts is to explore alternative feature 
descriptors to see if they can achieve better performance than PHOG. SPCEDD and GIST are among the features we 
have tested. Our experiments show that for the abdomen data, the result of using GIST is better than that of PHOG, and 
the result of PHOG is better than that of SPCEDD.  For the cervix data, the result of PHOG is better than that of GIST, 
and the result of GIST is better than that of SPCEDD. Therefore, we also test the combined feature of PHOG and GIST. 
In addition to examining additional features, we also evaluate PHOG performance using different parameter values 
(number of bins B and number of levels L). Results were that, the performance of B = 8 is similar to B = 16; the 
performance of L = 3 is similar to L = 2, and both are better than the performance of L = 1. Roughly speaking, the images 
in each row in Figure 6 look more similar to each other than to others in other rows (which are relatively more distant 
locations along the body z-direction). This observation motivates the idea of the coarse-to-fine, two-step approach 
described in Section 2.6. To train the supervised classifier, we experimentally divide the series of slices into different 
body segment groups using heuristic rules. For example, for abdomen data, four groups are generated. Specifically, 
given the slices ordered from bottom to top along the z-direction for each patient, group 2 contains all the slices that 
include both right kidney and left kidney; group 1 contains all the slices that are below the first slice in group 2; group 4 
contains all the slices that are above the last slice in which the liver is included; and group 3 contains all of the remaining 
slices. Only the images in the retrieval database are used to train the classifier. The features used by the classifier are 
PHOG and GIST. We use the SMO (Sequential Minimal Optimization) implemented in Weka [13] to do the 
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4. CONCLUSIONS  

In this paper, we aim to automatically annotate a 2-D axial view CT image with multiple anatomical organ terms. This 
multi-label image annotation method is based on using content-based image retrieval techniques. We work on a set of 
labeled multi-organ 2-D CT slices generated from the CT volumetric dataset provided by the MICCAI 2015 organ 
segmentation challenge. We extract the features PHOG, SPCEDD, and GIST for finding similar images. We adapt a 
weighted voting scheme to assign multiple labels to the query image by combining the labels of the similar images 
identified by the method. We propose a coarse-to-fine retrieval strategy which integrates the classification at the coarse 
level with nearest-neighborhood search at the fine level. We carry out two experiments using the MICCAI 2-D CT 
datasets to quantitatively compare and evaluate features, parameters and retrieval approaches. We also test our method 
for annotating Open-i figure query images and discuss the results. 
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