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Abstract— Image augmentation is a commonly performed
technique to prevent class imbalance in datasets to compensate
for insufficient training samples, or to prevent model overfit-
ting. Traditional augmentation (TA) techniques include various
image transformations, such as rotation, translation, channel
splitting, etc. Alternatively, Generative Adversarial Network
(GAN), due to its proven ability to synthesize convincingly-
realistic images, has been used to perform image augmentation
as well. However, it is unclear whether GAN augmentation
(GA) strategy provides an advantage over TA for medical
image classification tasks. In this paper, we study the usefulness
of TA and GA for classifying abnormal chest X-ray (CXR)
images. We first trained a progressive-growing GAN (PG-
GAN) to synthesize high-resolution CXRs for performing GA.
Then, we trained an abnormality classifier using three training
sets individually – training set with TA, with GA and with
no augmentation (NA). Finally, we analyzed the abnormality
classifier’s performance for the three training cases, which led
to the following conclusions: (1) GAN strategy is not always
superior to TA for improving the classifier’s performance; (2)
in comparison to NA, however, both TA and GA leads to a
significant performance improvement; and, (3) increasing the
quantity of images in TA and GA strategies also improves the
classifier’s performance.
Keywords: Deep learning, Generative adversarial network,
Medical image synthesis, Chest X-ray, Abnormality classifica-
tion, Progressive-growing GAN

I. INTRODUCTION

Training datasets play an important role in regulating
supervised classifier performance including deep learning
networks [1]. Particularly, for medical image training sets
there are two major challenges: obtaining sufficient labeled
data and obtaining class-balanced data in case of multi-
class training. Traditionally, both these challenges have been
tackled using image augmentation. Apart from this, image
augmentations have also been used for preventing model
overfitting by introducing data diversity and regularization.
The traditional augmentation (TA) techniques include trans-
formations, such as rotation, translation, channel splitting,
Gaussian smoothing, unsharp masking, and etc. These image
transformations improve model robustness, generalization,
and learn better characteristics for making image distinctions.
Generative Adversarial Networks (GANs) are well-known
for generating synthetic data close to the training set distri-
bution [2]. For this reason, they have been largely used for
medical image synthesis – as a matter of fact, 36% of the
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GAN-based papers in medical imaging domain pertains to
synthesizing images, followed by a segmentation and image
reconstruction [3]. Hence, GAN is a powerful tool for image
augmentation in medical image datasets.

Although GANs have been used to synthesize MRI,
CT [4], and natural image modalities [5], their potential
in synthesizing chest X-ray (CXR) images have not been
fully explored. Previous works published on CXR GAN
augmentations (GA) include assessment of GA for car-
diomegaly and multiple chest pathology classification using
Deep Convolution GAN (DC-GAN) [6], [7]. The goal of
this paper is to study the effectiveness of GA and TA
on a CXR abnormality classifier’s performance, with the
baseline as a training set with no augmentation (NA). We
first implement the progressively-growing GAN (PG-GAN)
model [8] and train it on a large dataset of normal and
abnormal CXR images. Then, we train a CXR abnormality
classifier with NA, TA, and GA training sets individually,
and study the performance variation of the classifier for
each type of augmentation strategy. In addition, we vary
the number of augmented images that was included in each
training set, and determine if the classifier performance
is affected by the quantity of image augmentations. Our
analysis show that TA improves the classifier’s performance
in most cases than GA, however, both TA and GA contributes
largely to performance improvement when compared to NA.
Hence, this study concludes that image augmentations offer
improvement in model performance, but GA strategy needs
further investigation on its relative performance degradation,
contrary to some works reporting better performance for GA
strategy than TA [6], [7]. Further, it can be concluded that
the number of augmented images in TA strategy also plays
a role in the classifier’s performance.

II. METHODS

We performed a comparative study between NA, TA and
GA strategies for improving the performance of an abnor-
mality classifier for CXR images. The following sections
describe how the performance analysis was done and the
deep network models used in various parts of the study.

A. PG-GAN Model Overview

PG-GAN was introduced by Karras et al., [8] as an attempt
to synthesize high-resolution images (upto 1024x1024 pix-
els), which were not realizable by DC-GANs. The primary
reason for the difficulty in achieving high-resolution images
before the introduction of PG-GANs was that the weights
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Fig. 1. Generator and Discriminator of PG-GAN – The network is
progressively grown starting from 4x4 and trained until it reaches the
required resolution. Image source [8]

could not be learned consistently while searching for the
global minimum using a network of that size. To circumvent
this limitation, the weights in PG-GAN are learned by
progressively growing the network starting from a 4x4 up to
the final resolution. For example, in case of an image with a
resolution of 512x512 pixels, the image is first downsampled
into resolutions of 4x4, 8x8, 16x16, and all the way to
512x512. Then, the network is trained starting from the
smallest resolution. After training the smallest resolution, the
network is grown to the next resolution and the training is
continued using the previous weights. In other words, the
weights of the smaller resolutions are fully learned before
switching the network to the higher resolution, thus making
it possible for the network to reach the global minimum for
the higher resolution weights. The network model is shown
in Figure 1. More details on the PG-GAN model can be
found in Ref. [8]. We utilize this model to synthesize high-
resolution CXR images as explained in the following section.

B. Dataset and Training Details of PG-GAN

The goal of training a PG-GAN is to perform GA
for the abnormality classifier, using realistic CXR im-
ages of normal and abnormal classes. The dataset used
in this study is made available for the Radiological So-
ciety of North America (RSNA) machine learning chal-
lenge (https://www.kaggle.com/c/rsna-pneumonia-detection-
challenge/data) by the joint effort of radiologists from the
RSNA and Society of Thoracic Radiology (STR). The dataset
includes images with pulmonary opacity that may represent
pneumonia or other disorders and other images with no
abnormal findings. All the images were of 1024x1024 pixel
dimensions with an 8-bit depth. The images were first pre-
processed by segmenting the lung region of interest (ROI)
using a dropout UNET [9]. This segmentation helps to
remove irrelevant regions that carry structures that do not
contribute to the abnormality, so that the PG-GAN can focus
on learning the ROI. The UNET model consists of dropout
layers following a Gaussian distribution, after every pair of

convolution and ReLU layers. The addition of Gaussian noise
is expected to mimic the noise present during CXR image
acquisition. The resulting images were cropped to a bounding
box containing the lungs and were then resized to 512x512
pixels. These 512x512 images (8,954 normals and 11,653
abnormals) were used for training the PG-GAN.

Fig. 2. Random Samples During Training – For each network size, the
training progression becomes visually better, and at the final 512 resolution,
the sample is at its best quality.

The normal and abnormal images were randomly selected
from the RSNA collection, and split into equal number (N =
6268) for training set while the rest (N = 2686 for normals
and N = 5385 for abnormals) were used for test set. The PG-
GAN was individually trained on the normal and abnormal
images in the training set. Each training phase took about six
days on a high-performance machine with an NVIDIA GTX
1080Ti GPU and 48GB RAM. An example of progressive
resolutions at different training instances is shown in Figure
2. After the network was fully trained, which took about 150
epochs, images of each class were synthesized and used in
the GA-training set of the abnormality classifier as described
below.

C. Abnormality Classifier Model

Transfer learning assists in faster loss convergence by
initializing the current model with the learned weights of
a pre-trained model [10]. In this study, a pre-trained VGG16
model [11] was used and customized for CXR abnormality
classification. The model was truncated at the last convolu-
tion layer and a global average pooling (GAP) followed by a
final dense layer was added to output the binary labels. The
model architecture is shown in Figure 3.

The model was initialized with ImageNet weights and then
fine-tuned end-to-end to learn the hierarchical feature repre-
sentation from the CXRs. A randomized grid search [12] was
performed to obtain the best values for the hyperparameters
that include momentum, learning rate, and L2-weight decay.
The search range for these parameters were set to [0.8, 0.9],
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Fig. 3. Abnormality Classifier Architecture – Custom VGG16 model initialized with ImageNet weights for classifying normal and abnormal CXRs. Conv
is convolutional layers and GAP is global average pooling.

[1e-6, 1e-3], and [1e-10, 1e-2], respectively. This classifier
was then trained using various augmentation strategies as
explained in the following section.

D. Training Using NA, TA and GA training sets

1) No Augmentation (NA): The same training set (N =
6268 normal and abnormal images each) that was described
before was used to train the abnormality classifier without
any augmentation. The model was trained for 100 epochs the
learning rate was decreased whenever the validation accuracy
ceased to improve. Model training took an hour on a Linux
machine with 1080Ti GPU and 64GB RAM. All the training
described henceforth used the same training set as the base
for performing augmentation.

2) Traditional Augmentation (TA): TA was performed on
the training set images during the run-time of each mini-
batch of the classifier training. As mentioned earlier, we
aimed to also study the effect of varying number of augmen-
tations, in addition to the types of augmentation strategies.
For this purpose, we split the augmentations into 25%,
50%, 75% and 100% of the number of training samples,
and performed the training on each of the augmentation
proportion set.

The transformations applied as part of the TA were Gaus-
sian smoothing, unsharp masking, and minimum filtering.
Gaussian smoothing helps to reduce the electronic noise due
to random variations in the brightness and color and improve
the detection of edges present in the image. Unsharp masking
helps in amplifying the high-frequency image components,
which again pertains to the edges. Minimum filtering finds
the minimum of the pixels within a localized region and
in turn aids to remove positive outlier noise in images.
The model was trained for 100 epochs, and the training
took between one to three hours for varying proportion of
augmentations to complete on the machine with the same
configuration mentioned in NA.

3) GAN Augmentation (GA): Using the trained PG-GAN,
CXRs were synthesized and added to the training set by
following the same proportions as described above (25%
- 100% of images present in the training set). Hence, a
total of 6268 (100% of the training set) images of 512x512
pixel dimensions were synthesized for each class. Example
of some synthesized images of normal and abnormal classes
are shown in Figure 4.

The optimal values of momentum, learning rate, and
L2 weight decay were found to be 0.9, 1e-4, and 1e-6,

Fig. 4. Synthesized CXRs Examples – Some examples of normal and
abnormal CXRs generated by the PG-GAN. The images can be visually
deemed as having considerable quality and overall structure.

respectively. The trained models were evaluated with the
test set to make predictions. The performance metrics were
computed as discussed in the following section.

E. Classifier Performance Analysis

The performance of the abnormality classifier was ana-
lyzed based on the following metrics: accuracy (ACC), area
under the curve (AUC), F-Score, and Matthew’s Correlation
Coefficient (MCC). These metrics were computed for NA,
TA, and GA cases along with cases of different proportion
of augmentations. These results are shown in Table I.
The following observations can be made from Table I:
1. The performance of the classifier with augmentation (both
TA and GA) is always higher than the performance of the
classifier without augmentation (NA). This observation is
coherent with various other studies [13], [5] which also
emphasizes that augmentation intends to reduce model over-
fitting and improve generalization by introducing diversity in
the training set distribution, hence improving the classifier
performance.

2. The performance of the classifier trained on TA dataset is
higher than the one trained on GA dataset. This observation
is counter-intuitive due to the fact that the purpose of GA
is to generate realistic images that resembles the training
set. However, it could be that the lower performance may
be attributed to the limited variance exhibited by GA im-
ages. In general, data augmentation is performed to intro-
duce controlled variance during training. So, the PG-GAN-
generated high-resolution images provide little variance for
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TABLE I
SUMMARY OF PERFORMANCE METRICS – PERFORMANCE OF THE

ABNORMALITY CLASSIFIER USING NA, TA AND GA TRAINING SETS.
BOLD NUMBERS INDICATE BETTER PERFORMANCE.

the abnormality classifier to learn, as opposed to TA, where
the augmented data mimics the biological variance present
in the unseen test set.

Another perspective could be that with TA strategies,
the abnormality classifier may find it relatively easier to
approximate the noise functions in TA images as compared
to approximating (especially since it has fewer parameters)
the images generated by GANs which use large and complex
functions for synthesis. However, the improvements in per-
formance between GA and TA are only modest, and further
analysis is required to interpret the performance degradation
due to GA.

3. The performance of the classifier increases with an in-
crease in the proportion of augmented images. From the
performance metrics in Table I, it can be observed that
the performance increases gradually as the percentage of
the augmentations increase irrespective of the augmentation
strategy. Maximum performance is for 100% augmentation,
which basically means the number of images augmented is
twice the original training set (N = 6, 268 × 2 = 12, 536).
The performance of the classifier for augmentations higher
than 100% would be investigated in our future work.

III. CONCLUSION

In this paper, we analyzed the effect of various data
augmentation strategies on the performance of abnormality
detection of CXR images. The PG-GAN was able to generate
visually realistic CXRs, however, the augmentation using
GAN-generated images slightly lowered the performance of
the abnormality classifier compared to the augmentations
using traditional techniques. This might be due to the in-
ability of GANs to expand the information space while
adding more samples for training. Further, it is more difficult
to train a GAN rather than applying TA to the data. The
performance with augmentation compared to that without
any augmentations showed improvement regardless of the
type of number of augmentations. Also, we found that the

performance of the classifier improves with increasing the
number of augmentations for both TA and GA strategies.
Further investigation is needed to learn why GA degrades
the classification performance and also to study the effect
of increasing the number of augmentation to >100% on the
performance of the CXR abnormality classifier.
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Wimmer, and Katja Bühler. Fully convolutional architectures for
multi-class segmentation in chest radiographs. IEEE Transactions on
Medical Imaging, 2018.

[10] Sivaramakrishnan Rajaraman, Sema Candemir, Incheol Kim, George
Thoma, and Sameer Antani. Visualization and interpretation of
convolutional neural network predictions in detecting pneumonia in
pediatric chest radiographs. Applied Sciences, 8(10):1715, 2018.

[11] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[12] James Bergstra and Yoshua Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning Research,
13(Feb):281–305, 2012.

[13] Jared A Dunnmon, Darvin Yi, Curtis P Langlotz, Christopher Ré,
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