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Abstract. Convolutional neural network (CNN) has become the architecture of
choice for visual recognition tasks. However, these models are perceived as
black boxes since there is a lack of understanding of their learned behavior from
the underlying task of interest. This lack of transparency is a drawback since
poorly understood model behavior could adversely impact subsequent decision-
making. Researchers use novel machine learning (ML) tools to classify the
medical imaging modalities. However, it is poorly understood how these
algorithms discriminate the modalities and if there are implicit opportunities for
improving visual information access applications in computational biomedicine.
In this study, we visualize the learned weights and salient network activations in
a CNN based Deep Learning (DL) model to determine the image characteristics
that lend themselves for improved classification with a goal of developing
informed clinical question-answering systems. To support our analysis we cross-
validate model performance to reduce bias and generalization errors and perform
statistical analyses to assess performance differences.

Keywords: Image modality � Classification � Visualization � Saliency �
Deep learning � Machine learning

1 Introduction

Medical images serve as a vital source of information for disease screening/diagnosis
and an indispensable source of knowledge in clinical decision making/research [1]. The
size of medical image repositories has been growing exponentially with the widespread
use of digital imaging in clinics and hospitals. These voluminous repositories provide
opportunities for researchers to extract meaningful information and develop comput-
erized tools for screening/diagnosis. Medical images have also become an imperative
part of the content in several biomedical publications [2–6]. This makes automated
medical image classification and retrieval significant in a clinical decision support
system, as well as for educational purposes. The images are from diverse medical
imaging modalities such as common radiological imagery (e.g., X-rays, Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), ultrasound, among others),
other medical images that often captured in the visual image spectrum as “pho-
tographs” but have distinct clinical classes (e.g., retinal funduscopy, endoscopy,
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different kinds of microscopic images, surgical photography, photographs of medical
devices and systems, among others), and also other graphical drawings and statistical
charts of clinical importance found in biomedical journals.

Traditional image classification/retrieval methods tend to be text-based that index
images based using descriptive metadata and manual annotations. While these are
useful, the textual information may not be consistent with the visual content and
modality classification becomes a concern. Also, text-based image classification
doesn’t consider the representation of image content. Images from different modalities
have unique visual patterns, not contained in text labels. Thus, classification tools that
arrive at decisions based on visual similarity are a meaningful complement and key for
hybrid (text + image) information access systems. Conventionally, rule-based, hand-
crafted features are extracted from the images toward visual recognition tasks [7].
However, the process is laborious, computationally expensive, demands iterative
labeling and calibration. Hand-engineered features are specific to the modality and are
often not transferable to other tasks resulting in suboptimal classification. Under these
circumstances, data-driven machine learning (ML) approaches like Deep Learning
(DL) becomes a handy tool [8–13].

To overcome challenges of devising hand-engineered features that capture varia-
tions in the underlying data, convolutional neural networks (CNN), a class of DL
models are used in visual recognition tasks, to discover/learn hierarchical feature
representations from raw input pixels [14]. CNNs learn these representations through
their inherent mechanisms of receptive fields, shared weights and pooling [15]. These
models learn to abstract lower-level features to construct higher-level features and learn
complex, non-linear decision-making functions toward performing simultaneous fea-
ture extraction and classification. In 2012, the AlexNet model proposed by Krizhevsky
[15] won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [16] and
brought the initial breakthrough in visual recognition tasks. This led to the use of
several CNNs with varying architecture and depths including VGGNet [17], Inception
[18], ResNet [19], Xception [20], and DenseNet [21]. At present, CNNs are delivering
promising results in visual recognition tasks at levels exceeding human performance
[22]. The encouraging performance of CNNs is accompanied by the availability of a
large amount of annotated data. When annotated data are sparse, like in the case of
medical images, transfer learning methods are preferred. In this approach, the CNNs
are trained on a large selection of stock photographic images like ImageNet that contain
more than 1.2 million annotated stock photographic images across 1000 categories
[16]. The rich feature representations learned in the form of generic features from these
large-scale datasets are transferred to the current task. The pre-trained model weights
are fine-tuned in the deeper layers to learn the representations from the new task. The
number of layers to fine-tune depends on the availability of annotated data. Literature
studies have demonstrated that fine-tuning is a robust and effective strategy to adopt for
a variety of classification/recognition tasks [23]. Fine-tuning would be a promising
option for medical modality classification, the pre-trained weights could serve as a
promising initialization for the new task [24]. The pre-trained CNNs are also used as
feature extractors to extract the learned features from the current task. The extracted
features are used to train a classifier to make predictions [25].
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While state-of-the-art studies elucidate diversemethods for classification/recognition,
none of them provide insights into the learned behavior of CNNs or rationalize their
performance. It is equitable to declare that the current studies leave room for progress in
visualizing and understanding CNN models. The unsettled issue of interpreting the
learned behavior of CNNs toward classifying image modalities has become significant
and is the focus of this work. In this study, we visualized the learned weights and salient
network activations in an optimally trained CNN model applied to the task of medical
modality classification.We evaluated the performance of state-of-the-art CNNs including
VGG-16, ResNet-50, Xception, Inception-V3, and DenseNet-121, customized for the
current task. We cross-validated the performance of the models to reduce
bias/generalization errors and statistically validated for thepresence/absence of significant
differences in their performance. The following paper is organized as follows: Sect. 2
discusses the related work, Sect. 3 particularizes on the materials and methods, Sect. 4
discusses the results, and Sect. 5 concludes the work.

2 Related Work

Modality classification has become an imperative research task in recent years. Eval-
uation campaigns like Image Cross Language Image Retrieval (ImageCLEF) has been
providing collections of annotated medical images for a variety of challenges including
modality classification, compound figure separation, image captioning, and visual
question and answering [26–30]. However, the collections are sparse in comparison to
ImageNet and other large-scale data collections. Conventional methods for modality
classification use rule-based, handcrafted feature descriptors toward representing the
image characteristics. In [31], the authors used the ImageCLEF2011 modality classi-
fication dataset and a combination of SIFT and Bag-of-Colors based feature descriptors
toward classifying the modalities. The authors demonstrated a classification accuracy
of 72.5% and highlighted the importance of using color descriptors. In another study
[32], the authors used the ImageCLEF2015 modality classification dataset and
extracted SIFT and Bag-of-Words features to train a multi-class support vector machine
(SVM) and obtained a classification accuracy of 60.91%. The authors in [33] used the
same dataset, extracted 1st and 2nd order color features, and a manifold-based sparse
classification method toward obtaining an accuracy of 73.24%. In another study [34],
the authors participated in the ImageCLEF2016 sub-figure classification task, extracted
features including contrast, gradient orientations, color, and local pattern distributions
and trained a multi-class neural network classifier to obtain a classification accuracy of
72.46%. Literature reveals that the studies used rule-based features that suffer from
limitations owing to lack of sufficient human experts to perform manual annotations,
inter-/intra-observer variability, inter-class similarity and intra-class variances [35].

At present, DL is delivering promising results as compared to hand-engineered
feature extraction in visual recognition tasks. The authors in [36] used multiple, cus-
tomized CNNs to classify the ImageCLEF2013 medical modality collection with an
accuracy of 74.90%. The authors in [37] used an ensemble of fine-tuned CNNs
including AlexNet and GoogLeNet and obtained an accuracy of 82.48% in classifying
the modality data collection from the ImageCLEF2016 evaluation challenge. The
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authors in [38] used a combination of pre-trained and customized CNNs toward
classifying the sub-figure classification dataset from ImageCLEF2015 and Image-
CLEF2016 evaluation challenges and obtained an accuracy of 76.87% and 87.37%
respectively. In another study [39], the authors extracted features using a pre-trained
ResNet and trained an SVM classifier to obtain an accuracy of 85.38% toward Ima-
geCLEF2016 modality classification task. The authors in [40] participated in the
ImageCLEF2016 subfigure classification challenge, employed a synergic signal
method to merge the features of multiple fine-tuned ResNet models, and obtained an
accuracy of 86.58%. While current literature explains promising methods for modality
classification using CNNs, none of them interprets their learned behavior. The indis-
pensable need for visualizing and interpreting the learned behavior of CNNs toward
classifying image modalities is the motivation behind this study.

3 Materials and Methods

3.1 Data Collection and Preprocessing

In this study, an 11-class modality classification was performed, the modalities include
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission
Tomography/CT fusion (PET/CT), ultrasound, 2-D radiography (X-ray), Scanning
Electron Microscopy (SEM), Fluorescence Microscopy (FM), Light Microscopy (LM),
retinal funduscopy, colonoscopy and statistical graphs. We pooled data from various
resources including ImageCLEF2013 modality classification challenge [31], Open
Access Biomedical Image Search Engine (OpenI®) and the Internet. For PET/CT, we
collected additional images belonging to soft-tissue sarcoma [41], breast [42], head and
neck cancer [43], non-small cell lung cancer [44] and prostate cancer [45], from the
Cancer Imaging Archive [46]. For colonoscopy, we collected colonoscopy procedure
videos from the Web and applied a frame grabbing algorithm to generate images.
Additional retinal funduscopy images were pooled from the Messidor [47] dataset that
includes 1200 images, acquired using color CCD cameras on a non-mydriatic retino-
graph. Sample images from different image modalities (Fig. 1). The distribution of data
across the modalities is tabulated in Table 1. We evaluated the performance of state-of-
the-art CNNs including VGG-16, ResNet-50, Xception, Inception-V3, and DenseNet-
121 through five-fold cross-validation toward optimal model selection. As observed in
Table 1, the distribution of data was imbalanced across the classes. To mitigate this
issue, data was augmented by introducing class-specific perturbations in the training
samples [15]. Data augmentation has been shown to improve the robustness, gener-
alization ability of the predictive models, reduce bias and overfitting. The perturbations
were reproducible that did not alter the image semantics but helped in generating new
samples during model training. The data was augmented with rotations in the range
(–3, 3), width/height shifts (–2, 2), horizontal and vertical flips. The categorical cross-
entropic loss was modified by observing the distribution of class labels and producing
weights to equally penalize the under/over-represented classes to assist the models to
learn equally well across the classes [48]. Images were resampled to 300 � 300 pixel
resolutions and mean-normalized to assist the models in faster convergence. The
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models were trained and tested on an NVIDIA DGX-1 system having Tesla V-100
GPUs with computational tools including Python® 3.6.3, Keras® 2.1.2 with Ten-
sorflow® 1.4.0 backend, and CUDA 8.0/cuDNN 5.1 dependencies for GPU
acceleration.

Fig. 1. Sample images from different modalities: (a) CT, (b) MRI, (c) PET/CT, (d) ultrasound,
(e) retinal funduscopy, (f) SEM, (g) FM, (h) LM, (i) colonoscopy, (j) statistical graphs, (k) X-ray.

Table 1. Distribution of data across the image modalities.

Modality #Images

CT 17,055
MRI 12,720
PET/CT 5,510
X-ray 20,030
Ultrasound 6,230
Colonoscopy 14,000
SEM 2,200
FM 5,000
LM 3,900
Retinal funduscopy 2,650
Statistical graphs 2,190

46 S. Rajaraman and S. Antani



3.2 Model Configuration

The performance of CNNs including VGG-16, ResNet-50, Xception, Inception-V3, and
DenseNet-121 was evaluated in this study. The models were initialized with pre-trained
ImageNet weights and truncated at their deepest convolutional layer. A convolutional
layer with 1024 filters of 3 � 3 dimensions, followed by a global average pooling
(GAP) and Softmax layer was added to the truncated models as shown in Fig. 2. The
pre-trained weights were fine-tuned using small weight updates to learn the represen-
tations of the image modalities, as established in the following steps: (a) instantiating the
convolutional base of the pre-trained models and loading their weights; (b) truncating
the models at the deepest convolutional layer; (c) adding the convolutional, GAP layer
and top-level classifier; and (d) fine-tuning the models alongside the newly added layers
to learn the representations for the current task. The models were optimized for hyper-
parameters by a randomized grid search method [49]. Search ranges including [1e−3
10e−2], [0.8 0.95] and [1e−10 10e−2] were used for the learning rate, stochastic gra-
dient descent (SGD) momentum and L2-regularization respectively. A mini-batch size
of 10 was used, 9148 iterations were performed per epoch. The performance of the
predictive models were evaluated through five-fold cross-validation with the following
performance metrics: (a) accuracy, (b) area under receiver operating characteristic
(ROC) curve, (c) sensitivity, (d) specificity, (e) F1-score, and (f) Matthews Correlation
Coefficient (MCC) [50].

3.3 Visualization Studies

DL models are perceived as black boxes since the learned representations are difficult
to extract and present in a human-readable form. However, the representation learned
by CNNs are highly amenable to visualization because they represent visual concepts.
The convolutional layers learn template matching filters whose output gets maximized
on observing similar patterns in the input samples [51]. The layers at the beginning of
the model are simple to interpret by visualizing the weights as an image. Filters in the
deeper layers abstract the outputs from the earlier layers, making interpretation hard.
Several methods have been developed for visualizing and interpreting the learned
representations of the CNN models including visualizing the learned weights and
intermediate layer activations. Visualizing the weights helps in interpreting the visual
patterns/concepts learned by the filters in a given layer. The process helps to identify
the robustness and generalization ability of the trained model by generating input
images that maximize the output of the given layer corresponding to the expected class.

Fig. 2. Model architecture.
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This is accomplished by performing gradient ascent in the input space by applying
gradient descent to the value of the input image pixels in order to maximize the
response of a specific filter. A loss function is constructed to maximize the value of the
filter in a given convolution layer and is minimized during iterations of gradient des-
cent. Visualizing intermediate layer activations helps in understanding successive data
transformations and gaining an intuition of the learned patterns. Given an input, acti-
vation visualization helps to display the feature maps that are output by the convolu-
tional and pooling layers toward interpreting the relatively independent features learned
by the filters. The learned feature maps are visualized by independently plotting the
filter contents as a 2D image.

3.4 Statistical Analyses

Statistical analyses help to validate the performance of the predictive models by
describing the nature of the data, identifying the trends, and summarizing their rela-
tionships. Skewness and kurtosis give a measure of data variability [52]. Skewness is a
measure of symmetry. Kurtosis is a measure of whether the samples are heavy-
tailed/light-tailed relative to the normal distribution. Skewness and kurtosis measures
for a normal distribution should be as close to zero as possible. Statistical tests like one-
way analysis of variance (ANOVA) help in identifying the statistically significant
differences between the means of two or more unrelated groups [53]. The null
hypothesis (H0) infers the samples in the unrelated groups are drawn from populations
with similar means. The test produces an F-statistic given by the ratio of the population
variance calculated among the sample means to the variance within the samples.
A higher value infers that the samples were drawn from populations with varying
values for the mean. Under these circumstances, H0 is rejected and the alternate
hypothesis (H1) is accepted. One-way ANOVA is a parametric test that requires the
underlying data to satisfy assumptions of normality, independence of observations, and
homogeneity of variances [54]. A Shapiro-Wilk test [55] is performed to test for data
normality and Levene’s test [56] to observe the homogeneity of variances. One-way
ANOVA is an omnibus test that doesn’t reveal where exactly the statistically signifi-
cant difference exists. A post-hoc analysis like Tukey post-hoc is performed to identify
the models that demonstrate statistically significant differences in the mean values for
the different performance metrics under study [57].

4 Results and Discussion

4.1 Performance Metrics Evaluation

Training was stopped after 30 epochs (�274K iterations) when the validation accuracy
ceased to improve. From the randomized grid search, the optimal values for the
learning rate, SGD momentum, and L2 regularization were found to be 1e−4, 0.9 and
1e−6 respectively. The CNNs converged to an optimal solution due to hyper-parameter
optimization and regularization. It was observed from the cross-validation studies that
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VGG-16 gave promising results for accuracy, sensitivity, precision, and F1-score
compared to other models, as shown in Table 2.

4.2 Statistical Analyses Interpretation

While performing statistical analyses, it was observed that the skewness and kurtosis
measures were close to 0 to signify that the values of the performance metrics were a
little skewed and kurtotic but did not significantly differ from normality. It was also
observed that the results of Levene’s test were not statistically significant (p > 0.05) to
signify that the homogeneity of variances was not violated. Shapiro-Wilk test
(p > 0.05) and a visual inspection of the histograms and box plots showed that the
values for the different performance metrics were approximately normally distributed.
Hence, the parametric one-way ANOVA analysis was performed to observe for the
significant differences in the performance metrics for the models under study. The
values for the statistical measures and the consolidated results of one-way ANOVA are
shown in Table 3. It was observed that, in terms of accuracy, no statistically significant
difference in performance existed between the different models (F (4, 20) = 0.788,
p = .547). Similar results were observed for AUC (F (4, 20) = 2.221, p = .103), sen-
sitivity (F (4, 20) = 0.814, p = .531), precision (F (4, 20) = 0.777, p = .553), F1-score
(F (4, 20) = 0.805, p = .537) and MCC (F (4, 20) = 0.692, p = .606). However, in
terms of the minimum and maximum values, VGG-16 outperformed the other CNNs
except for AUC and MCC where ResNet-50 and DenseNet-121 demonstrated higher
values respectively. Considering the balance between sensitivity and precision as
demonstrated by F1-score, VGG-16 delivered promising results than the other models
under study.

4.3 Visualizing Convolutional and Dense Layers

Visualization studies were performed with the optimally trained VGG-16 model for the
current task. Inputs that maximized the filter activations in different layers of the model
were visualized. It was observed that each layer learned a collection of filters that got
increasingly refined and complex in the deeper layers. As observed in Fig. 3, the filters
in the first convolutional layer (block1-conv1) encoded simple directional edges and
colors/colored edges. The filters in the deeper layers (Fig. 4) abstracted the features
from the earlier layers to form complex patterns.

Table 2. Performance metrics computed for the predictive CNN models.

Models Accuracy AUC Sensitivity Precision F1-score MCC

VGG-16 0.990 ± 0.003 0.998 ± 0.001 0.990 ± 0.01 0.990 ± 0.007 0.990 ± 0.008 0.985 ± 0.008

ResNet-50 0.986 ± 0.009 1.0 ± 0.001 0.986 ± 0.009 0.987 ± 0.009 0.986 ± 0.009 0.995 ± 0.009

Xception 0.984 ± 0.01 1.0 ± 0.001 0.984 ± 0.01 0.985 ± 0.01 0.984 ± 0.01 0.988 ± 0.011

Inception-V3 0.988 ± 0.008 0.999 ± 0.002 0.989 ± 0.008 0.988 ± 0.008 0.988 ± 0.008 0.990 ± 0.007

DenseNet-121 0.980 ± 0.013 0.994 ± 0.009 0.980 ± 0.013 0.981 ± 0.012 0.980 ± 0.013 0.986 ± 0.015
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Table 3. Summary of statistical measures.

Performance
metrics

Models Skewness Kurtosis Shapiro-
Wilk

One-way ANOVA

Accuracy VGG-16 −0.398 0.913 −1.052 2.0 0.478 F(4,20) = 0.788,
p = .547ResNet-50 −0.782 0.913 0.094 2.0 0.814

Xception −0.734 0.913 −0.378 2.0 0.772
Inception-
V3

−0.439 0.913 −0.743 2.0 0.735

DenseNet-
121

−0.778 0.913 −1.271 2.0 0.403

AUC VGG-16 −1.540 0.913 2.581 2.0 0.113 F(4,20) = 2.221,
p = .103ResNet-50 −0.512 0.913 −2.963 2.0 0.167

Xception −0.588 0.913 −2.898 2.0 0.111
Inception-
V3

−0.932 0.913 −1.290 2.0 0.148

DenseNet-
121

−1.586 0.913 2.520 2.0 0.145

Sensitivity VGG-16 −0.398 0.913 −1.052 2.0 0.478 F(4,20) = 0.814,
p = .531ResNet-50 −0.818 0.913 0.268 2.0 0.806

Xception −0.725 0.913 −0.382 2.0 0.782
Inception-
V3

−0.313 0.913 −1.077 2.0 0.747

DenseNet-
121

−0.775 0.913 −1.264 2.0 0.413

Precision VGG-16 −0.418 0.913 −1.077 2.0 0.522 F(4,20) = 0.777,
p = .553ResNet-50 −0.698 0.913 −0.204 2.0 0.844

Xception −0.654 0.913 −0.562 2.0 0.815
Inception-
V3

−0.506 0.913 −0.559 2.0 0.730

DenseNet-
121

−0.673 0.913 −1.741 2.0 0.397

F1-Score VGG-16 −0.398 0.913 −1.066 2.0 0.483 F(4,20) = 0.805,
p = .537ResNet-50 −0.762 0.913 0.064 2.0 0.829

Xception −0.689 0.913 −0.468 2.0 0.799
Inception-
V3

−0.410 0.913 −0.845 2.0 0.723

DenseNet-
121

−0.765 0.913 −1.357 2.0 0.401

MCC VGG-16 −1.538 0.913 3.068 2.0 0.209 F(4,20) = 0.692,
p = .606ResNet-50 1.214 0.913 2.302 2.0 0.457

Xception −1.285 0.913 1.747 2.0 0.450
Inception-
V3

0.440 0.913 1.422 2.0 0.747

DenseNet-
121

−1.697 0.913 3.152 2.0 0.154
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The filters functioned as a basis of vectors to compactly encode the inputs that
became more intricate as they begun to incorporate information from an increasingly
larger spatial extent, converging to specific patterns in the image modalities under
study. The final dense layer was visualized as shown in Fig. 5. Filters 0 to 10 represent
CT, SEM, colonoscopy, FM, retinal funduscopy, statistical graphs, LM, MRI, PET/CT,
ultrasound, and X-ray respectively. It was observed that for CT, the filters maximally
responded to the CT-like contour patterns in the input. For SEM and LM, higher
activations were observed for blob-like cell patterns. For colonoscopy, the input pat-
terns that mimicked tissue color and texture maximally activated the filters. For FM, the
patterns exhibiting green fluorescence captured by the cells produced higher activa-
tions. Axes like patterns maximally activated the filters for the expected statistical
graphs class. For MRI, the input patterns simulating the neo-cortical convolutions led
to high values of activations. For PET/CT fusion, the input patterns mimicked scan
contours. For ultrasound, the patterns mimicked the tissue texture and shape of image

Fig. 3. Visualizing random filters in the first convolutional layer in the first convolutional block.

Fig. 4. Visualizing random filters in the third convolutional layer in the fifth convolutional
block.
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formation. For the X-ray class, the filters were maximally activated for rib and bone-
like patterns in the input image.

The trained model’s notion of the expected classes were found to be at the level of
local textures to demonstrate that they do not understand the concept of the classes
analogous to humans. The model learned the decomposition of the visual space as a
hierarchical-modular network of filters, a probabilistic mapping between filter combi-
nations and a set of class labels. However, the nature of human vision is not purely
convolutional. The human visual cortex is complex, active, structured into cortical
columns with multifaceted functionality, and involves motor control [58].

4.4 Visualizing Intermediate Activations

The activations of the intermediate layers of the trained VGG-16 model was visualized
to gain further insight into its performance and learned behavior. Given an input image
of CT and MRI for instance, random filters in the feature maps were extracted and
plotted to visualize the activations as shown in Figs. 6 and 7. It was observed that the
filters in the earlier layers acted as a collection of various edge detectors. The activa-
tions retained almost all of the information present in the original image. At the deeper

Fig. 5. Visualizing the final dense layer. (Color figure online)
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layers, the activations became increasingly abstract and less visually interpretable.
Higher representations carried increasingly less information about the visual contents,
and increasingly more information related to the expected class.

Fig. 6. Visualizing intermediate activations for an input CT image: (a) block1-conv1,
(b) block3-conv1, (c) block5-conv3, and (d) deepest convolutional layer.

Fig. 7. Visualizing intermediate activations for an input MRI image: (a) block1-conv1,
(b) block3-conv1, (c) block5-conv3, and (d) deepest convolutional layer.
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The sparsity of activations increased with the depth of the layer: in the first con-
volutional layer of the first convolutional block, almost all channels were activated by
the input image; in the deeper layers, many of the channels were blank that inferred that
the pattern encoded by these filters was not found in the input image. This led to the
interpretation of the important, universal characteristic of the representations learned by
CNNs; the features became increasingly abstract with the depth of the layer. The
activations of deeper layers carried subtle information about the specific input being
seen, and more information about the imaging modality. The CNN model acted as an
information distillation pipeline that operated on the raw input image pixels to perform
repeated transformations so that irrelevant information was filtered and useful infor-
mation pertaining to the modality of the image was magnified and retained.

5 Conclusion

In this study, we visualized the learned weights and salient network activations in a
trained CNN model toward understanding its learned behavior, applied to the challenge
of medical modality classification. We interpreted how the model distilled information
through transformations and retained characteristic features pertaining to the imaging
modality toward decision-making. We also statistically validated the performance of
the predictive CNNs for optimal model selection and deployment. We are currently
performing pilot studies in deploying the trained model into mobile devices and ana-
lyzing performance. We currently worked with images containing a single modality.
Often, figures contain multiple panels describing different modalities. In the future, we
plan to work with multi-panel images, perform panel segmentation so that each sub-
panel contains a single modality and improve the classification performance.
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