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Abstract
Charged-particle therapy is a rapidly growing precision radiotherapy technique that treats
tumorswith ion beams. Because ion-beamdelivery systems havemultiple degrees of freedom
(including the beam trajectories, energies and fluences), it can be extremely difficult to find
a treatment plan that accurately matches the dose prescribed to the tumor while sparing
nearby healthy structures. This inverse problem is called inverse treatment planning (ITP).
Many ITP approaches have been proposed for the simpler case of X-ray therapy, but the
work dedicated to charged-particle therapy is usually limited to optimizing the beam fluences
given the trajectories and energies. To fill this gap, we consider the problem of simultaneously
optimizing the beam trajectories, energies, and fluences, which we call full ITP. The solutions
are the global minima of an objective function defined on a very large search space and having
deep local basins of attraction; because of this difficulty, full ITP has not been studied (except
in preliminary work of ours).We provide a proof of concept for full ITP by showing that it can
be solved efficiently using simulated annealing (SA). The core of our work is the incremental
design of a state exploration mechanism that substantially speeds up SA without altering its
global convergence properties. We also propose an original approach to tuning the cooling
schedule, a task critical to the performance of SA. Experiments with different irradiation
configurations and increasingly sophisticated SA algorithms demonstrate the benefits and
potential of the proposed methodology, opening new horizons to charged-particle therapy.

Keywords Simulated annealing ·Markov chain Monte Carlo (MCMC) · Inverse treatment
planning · Charged-particle therapy · Hadrontherapy

B Marc C. Robini
marc.robini@creatis.insa-lyon.fr

B Feng Yang
yalltroy@gmail.com

1 CREATIS Laboratory (CNRS Research Unit UMR5220 and INSERM Research Unit U1206),
INSA Lyon, 69621 Villeurbanne, France

2 National Library of Medicine, National Institute of Health, Bethesda, MD 20894, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-020-00902-2&domain=pdf


Journal of Global Optimization

1 Introduction

1.1 Motivations and background

The goal of external beam radiotherapy is to irradiate tumors without damaging surrounding
healthy tissues and nearby organs at risk (OARs). In particular, charged-particle therapy, also
known as hadrontherapy, is a rapidly growing technique that uses pencil beams of protons
or heavier ions (such as carbon) to deliver a prescribed dose to the target tumor [1–5]. The
advantage of ion beams over X-rays is their good selectivity: they present low or negligible
lateral scattering, and their depth-dose profile has a sharp maximum—the Bragg peak—
whose position can be adjusted by changing the kinetic energy of the incident ions.

The first step in a radiotherapy treatment is to delineate the target tumor on CT or MRI
scan images, with safety margins accounting for setup uncertainties. This defines the so-
called planning target volume (PTV). The OARs are defined in the same way and their
union is referred to as the OAR region. Then, based on the tumor characteristics and the
OARs, a radiation oncologist prescribes the dose to be delivered to the PTV and chooses the
fractionation scheme, that is, the number of sessions (or fractions) of the treatment and their
frequency. For example, in the case of carbon, the prescribed dose is typically delivered in 4
to 20 fractions over 1 to 6 weeks.

We focus on the next step, namely inverse treatment planning (ITP), which is to find a
treatment plan that delivers the prescribed dose to the PTV while sparing the OAR region.
Because charged-particle therapy has many degrees of freedom (including the beam tra-
jectories, energies and fluences), ITP is considered intractable in its full generality and is
usually partially solved by optimizing the beam fluences given the trajectories and energies.
This suboptimal approach is called spot-intensity map optimization (SIO) and is similar to
fluence map optimization (FMO) in X-ray therapy. The dominant approaches to SIO and
FMO are linear programming [6–10] and quadratic programming [11–21]. Other approaches
include convex programming [22,23], mixed integer programming [24], minimax stochastic
programming [25], simulated annealing [26], and genetic algorithms [27–29].

There are currently three more general alternatives to SIO in the charged-particle therapy
literature: joint optimization of the beam energies and fluences [30], beam orientation opti-
mization (BOO) with decoupled SIO [31,32], and joint beam orientation and spot-intensity
map optimization [33]. In [30], the authors propose an iterative mixed integer programming
algorithm to simultaneously optimize the beam energies and fluences while limiting the num-
ber of distinct energies used for each beam orientation. In [31], the beam orientations are
optimized by local neighborhood search, with SIO performed for each visited configuration
using linear programming. This latter approach is improved in [32], where different global
optimization algorithms are used to provide a good starting point for local neighborhood
search. Finally, in [33], the beam orientations and the spot intensities are optimized simul-
taneously using a fast iterative shrinkage-thresholding algorithm to minimize an objective
function consisting of three terms: a dose-fidelity term measuring the deviation to the pre-
scribed dose, an �1-sparsity penalty limiting the number of active spots, and a group-sparsity
penalty controlling the number of active beam orientations.

Note that the BOO problem has been widely addressed for X-ray therapy (see, e.g., [34]
for a comprehensive introduction). In this case, the general ITP problem is to select the beam
orientations (usually 5–9 coplanar beam angles) and to compute their fluence maps. Again,
two BOO strategies can be identified. The first one is to perform FMO independently for
each visited beam orientation configuration; that is, ITP is formulated as the minimization
of an expensive objective function whose evaluation requires solving an FMO problem.
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The advantage is that virtually any general-purpose optimization algorithm can be used
to search for the optimal beam orientations: multistart gradient-based local search [35],
response surface [36], nested partitions [37], local neighborhood search [38], greedy set
cover [39], pattern search [40], simulated annealing [41–44], genetic algorithms [45–47],
and particle swarm [48] (see also [49,50] for a comparison of simulated annealing, genetic,
and cross-entropy methods). The second, less common strategy merges BOO and FMO by
simultaneously optimizing the beam orientations and fluences; the ITP objective is thenmuch
cheaper to evaluate, but the search space is much larger. Examples in this category include
mixed integer programming [51–53], genetic algorithms [54,55], and convex optimization
with a sparsity-inducing penalty [56].

Coming back to charged-particle therapy, we face the additional problem of optimizing
the Bragg peak positions via the beam energies. Moreover, for greater generality, we want
a framework in which the possible beam trajectories are not necessarily constrained to pref-
erential orientations. To our knowledge, apart from preliminary work of ours [57], the joint
optimization of the beam trajectories, energies and fluences has not yet been considered.

1.2 Overview

We propose an efficient and theoretically sound simulated annealing (SA) approach to what
we call the full ITP problem, which is to find the optimal trajectories, energies and fluences
of a given number K of ion beams with fixed transverse profile.

The space of all possible treatment plans is (T × E ×N )K, where T is the set of allowed
beam trajectories (the number of which is much larger than K ) and E and N are the sets
of possible energies and fluences. These three sets are constrained by the ion-beam delivery
system; in addition, T may be adapted to the tumor characteristics using expert knowledge.
Note that K can be either the number of beams of the entire treatment plan (meaning ITP is
performed prior to fractionation) or the number of beams in a single-fraction plan (meaning
the fractions are optimized independently of each other, possibly varying K and the prescribed
dose from one fraction to the other). The latter option is preferable not only for computational
complexity reasons, but also to account for interfraction variations of the patient geometry
(e.g., tumor growth or shrinkage, tumor and organmotion,weight loss or gain). For simplicity,
the term treatment plan, when used alone, will refer to the entire plan or a single fraction
without distinction.

We define an optimal treatment plan to be a global minimum of an objective function
U (ω) measuring the conformity between the prescribed dose and the dose delivered by the
input treatment plan ω. Because the search space is very large (much larger than in the partial
ITP problems discussed in the previous section), and because of the intricate relationship
between the dose delivered and the beam trajectories and energies, the objective has deep
local basins,1 which makes its minimization challenging and excludes greedy approaches.

The behavior of an SA algorithm is governed by a communication mechanism and a
cooling schedule. The communication mechanism is a Markov matrix whose entries are
the probabilities of the moves in the search space, and the cooling schedule is a decreasing
sequence of temperatures controlling the acceptance rate of uphill moves (i.e., moves that
increase the objective). The conditions for global convergence are quite mild: the communi-

1 The local minima and their basins depend on how the search space is explored. By claiming that the objective
has deep local basins, we actually mean that a landscape defined by the objective and a tractable exploration
mechanism will likely have many deep (possibly poor) local minima. This fact will be confirmed by our
experiments.
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cation mechanismmust be irreducible and have symmetric support, and the cooling schedule
must be logarithmic or exponential depending on whether we are interested in asymptotic or
finite-time convergence [58,59]. Therefore the key points in designing an efficient SA algo-
rithm are, first, to construct a communication mechanism striking a good balance between
rate of convergence and computational cost and, second, to properly tune the cooling sched-
ule. The core of our work is the construction of increasingly sophisticated communication
mechanisms for full ITP.Thefinal strategy to explore the search space is basedon temperature-
dependent moves that select the trajectories uniformly at random (u.a.r.) and find optimal
energy-fluence pairs in randomly chosen partition blocks of E × N . We also devise a new
method for selecting the initial and final temperatures of the cooling schedule: we build a spe-
cific auxiliary SA chain from which we can accurately estimate the temperatures achieving
given acceptance rates at the beginning and end of the optimization process.

Numerical experiments with different irradiation configurations show that the proposed
exploration strategy yields a computational speed-up of several orders of magnitudes over
simply designed communication. We also show that our full ITP approach significantly
outperforms SIO in terms of treatment plan quality and offers the possibility of substantially
reducing the number of spots needed for tumor coverage.However, the assessment of potential
clinical benefits is beyond the scope of this paper; our purpose here is to thoroughly introduce
a new strategy for full ITP in charged-particle therapy.

This paper is organized as follows. We formulate the full ITP problem in Sect. 2 and
review the relevant SA theory in Sect. 3. Our exploration strategy is developed in Sects. 4
and 5 (Sect. 5 focuses on implementation and computational complexity and can be skipped
on first reading). The issue of tuning the cooling schedule is addressed in Sect. 6, followed
by numerical experiments in Sect. 7. Concluding remarks are given in Sect. 8.

1.3 Notation

The abbreviations and main notation used in this paper are summarized in Table 1. Generally,
we use bold lower-case roman letters (e.g., v) for vectors, and caligraphic upper-case letters
(e.g., A) for sets. The cardinality (or size) of a set A is denoted by |A|. For any a, b ∈ Z

such that a � b, we let [a . . b] denote the set of integers in the interval [a, b].

2 The full inverse treatment planning problem

2.1 State space

An ion beam is represented by a trajectory (that is, a ray defining its center axis), an energy
e ∈ R

∗+, and a number of particles, or fluence, n ∈ N. A treatment plan is a finite set
of beams (b1, . . . , bK ) ∈ (T × R

∗+ × N)K, where T is an index set labelling the allowed
beam trajectories (for convenience, we make no distinction between an index τ ∈ T and
the trajectory indexed by τ ); we call T the irradiation geometry. In practice, because of the
technical limitations of ion-beam delivery systems, T is finite (although much larger than
K ), and so are the possible values for the energy and fluence.

Since a beam is only useful if its Bragg peak lies in the PTV, we assume that every
trajectory intersects the PTV, and we define the set of possible energies for a trajectory τ to
be

E(τ ) := {lδe
}
l∈N ∩

[
emin(τ )− δe, emax(τ )+ δe

]
, (2.1)
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Table 1 Abbreviations and main notation

BOO Beam orientation optimization

FMO Fluence map optimization

FWHM Full width at half maximum

ITP Inverse treatment planning

OAR Organ at risk

PTV Planning target volume

SA Simulated annealing

SIO Spot-intensity map optimization

u.a.r. Uniformly at random

MeVu−1 Energy per nucleon

Gy Unit of absorbed dose (Gray), 1 Gy = 1 J kg−1
R
∗+ Set of positive reals

N
∗ Set of positive integers

�·�, �·�, �·� Floor, ceiling and nearest integer functions

K Number of treatment beams

T Irradiation geometry (i.e., set of allowed beam trajectories)

E(τ ) Set of possible energies for a beam with trajectory τ , (2.1)

N Set of possible beam fluences, (2.2)

δe, δn Energy and fluence increments

nmax Maximum fluence

b := (τ, e, n) Ion beam with trajectory τ , energy e, and fluence n

ω := (b1, . . . , bK ) Treatment plan (i.e., set of K ion beams)

T ⊗ E Set of possible trajectory-energy pairs, (2.3)

� Set of feasible treatment plans, or state space, (2.3)

|E | Average number of energies per trajectory, (2.7)

V Set of voxels representing the PTV-OAR region

U Objective function, (2.9)

D� Dose plan

D(v, b) Physical dose deposited in a voxel v by a beam b, (5.2)

{b(i)}i Ray discretization of b

|I| Number of rays modelling b

D Set of fluence-normalized doses, (5.4)

R Beam-to-voxel cross-section ratio, (5.23)

QT SA transition matrix, (3.7)

M Horizon (i.e., length) of the cooling schedule

(Tm,M )m Finite cooling schedule with horizon M

Tmax, Tmin Initial and final temperatures

αm,M Exponential cooling exponent, (3.13)

ξ Number of constant-temperature stages

	1 Communication with uniform candidate beams (Sect. 4.1)

ω\k (τ, e, n) Treatment plan ω with the kth beam bk replaced by (τ, e, n)

nω\k (τ, e) Optimal fluence of the kth beam, (4.3)

	2,η Communication with optimal fluence moves (Sect. 4.2)
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Table 1 continued

{Ep, j (τ )} j Partition of the energies into p interlaced subsets, (4.9)

	3,p,η Communication with semi-optimal energy-fluence moves (Sect. 4.3)

V(b) Set of voxels in V intersected by a beam b

Nd Average number of floating point operations for computing the entry
and exit depths of a ray into a voxel

where δe is a positive real constant (independent of τ ) and emin(τ ) and emax(τ ) are the energies
that position the Bragg peak along τ at the proximal and distal edges of the PTV, respectively.
The set of possible values for the fluence does not depend on the trajectory and is given by

N := {lδn
}
l∈N ∩ [0 . . nmax ], (2.2)

where δn and nmax 
 δn are positive integer constants.
A treatment plan (b1, . . . , bK ) is said to be feasible if bk := (τk, ek, nk) ∈ T ×E(τk)×N

for every k. The set of feasible treatment plans, or state space, is

� := ((T ⊗ E)×N
)K

, T ⊗ E :=
⋃

τ∈T
{τ }× E(τ ). (2.3)

It is important to note that � is considerably larger than the state spaces associated with
SIO and BOO. In the case of SIO, the trajectories τ1, . . . , τK and the energies e1, . . . , eK
are fixed, so the state space is simply N K . In the case of BOO, the irradiation geometry is
usually partitioned into subsets T1, . . . , TL defining equispaced beam orientations and having
the same size J−1K , where J is the number of orientations imposed for the treatment; the
state space is then

�BOO := CJ ([1 . . L])×N K , (2.4)

where CJ ([1 . . L]) is the set of J -combinations of [1 . . L]. Therefore,
|�|
|�BOO| =

(
L

J

)−1( ∑

τ∈T
|E(τ )|

)K
. (2.5)

In charged-particle therapy, J is typically 2–4, L does not exceed 72 (which corresponds to
a step angle of 5◦ over a full circular orbit), and |T | is at least of the order of 104. It follows
that |�|

|�BOO| 
 J ! |T |K−J |E|K , (2.6)

where |E| is the average number of energies per trajectory:

|E| := |T |−1
∑

τ∈T
|E(τ )|. (2.7)

In other words, the size ratio of � to �BOO grows exponentially with the number of beams
in the treatment plan.

2.2 Objective function

We define an optimal treatment plan to be a global minimum of an objective function U :
�→ R measuring the conformity between the prescribed dose, or dose plan, and the dose
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delivered by the input treatment plan. So the full ITP problem is minω U (ω) subject to
ω := (b1, . . . , bK ) ∈ �, or, equivalently,

min
(τk ,ek ,nk ) : k∈[1..K ]U ((τ1, e1, n1), . . . , (τK , eK , nK ))

subject to (τk, ek, nk) ∈ T × E(τk)×N for all k.
(2.8)

We consider the standard objective defined by discretizing the PTV and the OAR region into
a set of voxels V and summing the squared distances between the prescribed and delivered
doses over V , that is,

U (ω) :=
∑

v∈V

(
D�(v) −

∑

k∈[1..K ]
D(v, bk)

)2
, (2.9)

where D� is the dose plan and D(v, bk) is the physical dose deposited in v by the kth beam of
ω. The dose plan is, of course, zero in the OAR region, and the computation of the deposited
doses is described in Sect. 5.1. Note that since the fluence is nonnegative, the state space
implicitly imposes a positivity constraint on the delivered dose.

It is important to realize that the relation between the objective and the beam parameters
cannot be expressed explicitly, because the deposited doses depend on the depth-dose profiles
of the irradiating particles (these profiles are tabulated functions of the penetration depth that
are parameterized by the energy and obtained experimentally or simulated numerically).
This, along with the large size of the state space, makes full ITP particularly challenging.2

The BOO methods proposed in [31–33] search for a few optimal orientations in which to
distribute the beam trajectories; the number of these active orientations is setmanually [31,32]
or controlled by a regularization parameter [33]. In contrast, full ITP searches for an optimal
set of beams with no arrangement preference. In particular, if T is a BOO geometry, full ITP
will produce treatment plans whose beams are sparsely distributed across all orientations.3 In
the case where T is not partitioned into preferential orientations, full ITP should be viewed
as a prospect for future charged-particle therapy systems.

3 Optimization by simulated annealing

This section provides a general description of SA under the usual assumption that the state
space is finite, as is the case for full ITP.We refer to [58,59] for a comprehensive introduction
to annealing-based optimization. Given an objective function U : � → R with |�| < ∞,
the goal is to find a state with the smallest possible value of U, ideally in the set of global
minima

�min :=
{
ω ∈ � : U (ω) = min� U

}
. (3.1)

Here, � is any finite set (not necessarily a set of vectors as in Sect. 2), so we do not use the
boldface notation for the states ω.

2 In fact, the full ITP problem is an instance of the so-called minimum penalty treatment problem, which is
APX-complete [60].
3 The number of active orientations could be controlled by adding a group-sparsity penalty to the objective,
as in [33], but this topic is beyond the scope of this paper.
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3.1 The simulated annealing algorithm

The main components of an SA algorithm are its communication mechanism and its cool-
ing schedule. The communication mechanism defines the state exploration strategy and is
represented by a Markov matrix on �, or, equivalently, a family 	 := (	(ω, · ))ω∈� of
probability distributions on�. The entries of	 specify the possible moves in the state space,
that is, 	(ω,ω′) is the probability of selecting ω′ as the candidate solution given the current
solution ω. Thinking of � as a set of points in R

2 and of U as a measure of altitude, we
call the triplet (�,	,U ) a landscape. The cooling schedule is a decreasing sequence of
temperatures (Tm)m∈N∗ that converges to zero and controls the acceptance of uphill moves.
More precisely, the probability of accepting a move from ω to ω′ at temperature T is given
by

AT (ω, ω′) :=
{
1 if U (ω′) � U (ω),

exp
(− T −1(U (ω′)−U (ω))

)
if U (ω′) > U (ω).

(3.2)

Therefore, while downhill moves are unconditionally accepted, the probability of moving
uphill decreases with decreasing temperature and vanishes as the temperature goes to zero.

A finite-time realization (ωm)m∈[0..M] of an SA algorithm with landscape (�,	,U ) and
cooling schedule (Tm)m is generated as follows:

choose an initial state ω0 ∈ �

for m = 1 to M do
draw a state ω′ from the probability distribution 	(ωm−1, · )
set �U ←− U (ω′)−U (ωm−1)
if �U � 0 then set ωm ←− ω′
else

choose κ ∈ [0, 1] u.a.r.
if κ � exp(−T −1m �U ) then set ωm ←− ω′
else set ωm ←− ωm−1
end(if)

end(if)
end(for)

3.2 The communicationmechanism

The convergence of SA is based on the assumptions that the communication mechanism is
irreducible and has symmetric support. More precisely:

(i) there is a communication path from any state ω to any other state ω′, that is, a finite
sequence of states (ω j ) j∈[0.. p] such that ω0 = ω, ωp = ω′, and 	(ω j−1, ω j ) > 0 for
all j ∈ [1 . . p];

(ii) 	(ω,ω′) > 0 �⇒ 	(ω′, ω) > 0 for all (ω, ω′) ∈ �2.

Put simply, irreducibility means that the state space can be fully explored starting from
any state, and symmetry guarantees that the SA algorithm can move backward. We also
define the communication distance between two distinct states as the minimum length of the
communication paths connecting them, and we say that two states communicate at height h
if they are connected by a communication path along which the objective does not exceed h.

The set of allowed moves is often defined via a neighborhood system on �, that is, a
collection {S(ω)}ω∈� of subsets of � such that
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(i) ω /∈ S(ω) for all ω ∈ � ,
(ii) ω′ ∈ S(ω) �⇒ ω ∈ S(ω′) for all (ω, ω′) ∈ �2.

Given such a system, a communication matrix 	 is constructed by assigning a weight
θ(ω, ω′) > 0 to each ordered pair (ω, ω′) of neighboring states and setting

	(ω,ω′) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c θ(ω, ω′) if ω′ ∈ S(ω),

0 if ω′ /∈ S(ω) ∪ {ω},
1− c

∑

ω̃∈S(ω)

θ(ω, ω̃) if ω′ = ω,
(3.3)

where the constant c is chosen small enough so that 	 is a Markov matrix:

max
ω∈�

∑

ω̃∈S(ω)

θ(ω, ω̃) � 1

c
. (3.4)

The irreducibility is then equivalent to having a neighbor-to-neighbor path between any two
distinct states, and the support is symmetric by construction.

The communication mechanism also defines the set of local minima:

�loc(	) := {ω ∈ �
∣∣ ∀ω′ ∈ �, 	(ω,ω′) > 0 �⇒ U (ω) � U (ω′)

}
(3.5)

[in other words, ω ∈ �loc(	) if and only if the objective is lower bounded by U (ω) in the
neighborhood of ω]. A state ω in �loc(	)\�min is called a nonglobal minimum and is often
characterized by its depth and its basin: the depth of ω is the smallest number d � 0 such
that ω communicates at heightU (ω)+ d with a state ω′ satisfyingU (ω′) < U (ω); the basin
of ω is the set of states communicating with ω at a height less than U (ω)+ d .

3.3 Convergence properties

Formally, an SA algorithm with landscape (�,	,U ) and cooling schedule (Tm)m∈N∗ is a
discrete-time nonhomogeneous Markov chain (Xm)m∈N with transitions

P(Xm = ω′ | Xm−1 = ω) = QTm (ω, ω′), (3.6)

where the family of Markov matrices (QT )T>0 is defined by

QT (ω, ω′) :=

⎧
⎪⎨

⎪⎩

	(ω,ω′) AT (ω, ω′) if ω′ �= ω,

1 −
∑

ω̃∈�\{ω}
QT (ω, ω̃) if ω′ = ω. (3.7)

The theoretical intuition behind SA is best understood when, in addition to being irreducible,
the communication matrix 	 is symmetric. In this case, the stationary distribution of QT is
the Gibbs distribution

πT (ω) := (ZT )−1 exp(−T −1U (ω)), ZT :=
∑

ω∈�

exp(−T −1U (ω)). (3.8)

On the one hand, πT tends to the uniform distribution on � as T → +∞, and on the other
hand, πT tends to the uniform distribution on �min as T → 0. Therefore the state space is
more freely explored at the beginning of the annealing process (i.e., when the temperature
is high), and we can expect to get arbitrarily close to a global minimum in the long run (i.e.,
when the temperature approaches zero).
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It is well-known that if (Tm)m is a logarithmic cooling schedule of the form

Tm = Tmax log 2

log(m + 1)
(3.9)

with Tmax greater than a critical value depending on the landscape, then SA converges to the
set of global minima in the sense that

lim
m→∞ P(Xm ∈ �min) = 1 (3.10)

(see, e.g., [61,62]). However, this result holds for values of Tmax that are usually too large
to reach the low-temperature regime in a reasonable amount of computation time. In fact,
successful applications of SA use exponential cooling, the justification of which dates back
to the early 1990’s [63]. Two results are particularly important. First, the convergence rate
of SA cannot be faster than some optimal power μ� of m−1. Second, for every μ ∈ (0, μ�),
there is a family {(Tm,M )m∈[1..M]}M∈N∗ of finite exponential cooling schedules such that the
final state XM of the SA chain controlled by (Tm,M )m satisfies

P(XM ∈ �min) � 1− M−μ for sufficiently large M . (3.11)

The optimal convergence-speed exponent μ� is the inverse of the so-called difficulty of the
landscape, defined as the maximum ratio of the depth of nonglobal minima to their level
above min� U . The families of cooling schedules that yield (3.11) have the form

Tm,M := Tmax

(
Tmin

Tmax

)(m−1)/(M−1)
, (3.12)

where Tmax is independent of the horizon M and log Tmin ∼− logM .

3.4 Simulated annealing with temperature-dependent communication

Ideally, the communication mechanism should allow rapid exploration of the state space at
high temperatures and maintain a reasonable acceptance rate at low temperatures. However,
these two demands respectively require large and small neighborhoods S(ω) in (3.3) and are
thus in conflict. Consequently, practical SA algorithms are usually slowly mixing over wide
temperature ranges. A simple way to overcome this limitation is to replace 	 in (3.7) by a
family of Markov matrices (	T )T>0 converging to a communication mechanism adapted to
the low-temperature regime. This variant of SA belongs to the class of stochastic continuation
algorithms [59,64] and shares the convergence properties of standardSA if the followingweak
conditions are satisfied:

(i) lim T→0 	T (ω, ω′) exists for all (ω, ω′) ∈ �2 ;
(ii) the matrix with entries 	0(ω, ω′) := lim T→0 	T (ω, ω′) is an irreducible Markov

matrix with symmetric support;
(iii) the set of possible moves {(ω, ω′) ∈ �2 : 	T (ω, ω′) > 0} freezes to the support of

	0 at low temperatures.

In this case, the convergence-speed exponent of SA with temperature-dependent communi-
cation can be made arbitrarily close to the optimal exponent μ� of standard SA [59]. More
precisely, for every μ ∈ (0, μ�), (3.11) holds for piecewise-constant exponential cooling
schedules of the form

Tm,M := Tmax

(
Tmin

Tmax

)αm,M

, αm,M := (�M−1m ξ � − 1)/(ξ − 1), (3.13)

where ξ is the number of constant-temperature stages.
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4 Design of the communicationmechanism

We present here communication mechanisms for full ITP in increasing order of complexity
and efficiency. This incremental design approach facilitates the presentation and justification
of our final strategy for exploring the state space. Each proposed mechanism generates a
candidate move from the current solution by changing the parameters of a randomly selected
beam b� ; we call the resulting new beam b′� a candidate beam.

We begin with type-1 moves which generate candidate beams by choosing their trajecto-
ries, energies and fluences u.a.r. Although SA with type-1 moves allows to demonstrate the
feasibility of full ITP, it is slowly mixing in the mid- and low-temperature regimes and thus
inefficient. To avoid this problem, we introduce type-2 moves which select the trajectories
and energies u.a.r. and set the fluences to optimal values. We continue further with type-3
moves which select the trajectories u.a.r. and find optimal energy-fluence pairs in randomly
chosen partition blocks of the sets E(τ )× N , τ ∈ T . Our final exploration strategy con-
sists of temperature-dependent type-3 moves along with occasional type-1 moves to ensure
irreducibility and symmetric support.

The following sections provide high-level descriptions of these increasingly sophisticated
communication strategies; implementation details and computational cost analyses are given
in Sect. 5.

4.1 Type-1moves (uniform candidate beams)

A basic mechanism to generate a candidate solution ω′ := (b′1, . . . , b′K ) from ω :=
(b1, . . . , bK ) is to pick a beam index � u.a.r. and then change the trajectory, energy and
fluence of b� u.a.r. This is implemented as follows:

choose � ∈ [1 . . K ] u.a.r.
set b′k ←− bk for all k �= �

choose τ ∈ T u.a.r.
choose (e, n) ∈ E(τ )×N u.a.r.
set b′� ←− (τ, e, n)

The corresponding communication matrix is denoted by 	1 and defined by

	1(ω,ω′) :=
⎧
⎨

⎩

K−1

|T |·|E(τ )|·|N | if ω′ ∈ S1(ω),

0 if ω′ /∈ S1(ω) ∪ {ω},
(4.1)

where S1(ω) is the set of feasible treatment plans that differ from ω by a single beam b′�, that
is,

ω′ ∈ S1(ω) ⇐⇒ ω′ ∈ � and ∃!� ∈ [1 . . K ], b′� �= b�, (4.2)

and where τ is the trajectory of b′�.4 We call a move from ω to ω′ ∈ S1(ω) a type-1 move.
Clearly, {S1(ω)}ω∈� is a neighborhood system and any two states in � are connected by a
sequence of at most K type-1 moves. So 	1 is irreducible and has symmetric support.

The problemwith type-1moves is that their rejection rate is too high in the low-temperature
regime, causing slow convergence of the SA chain. Indeed, 	1 generates candidate beams
by sampling from a large set of three-component vectors [namely, (T ⊗E)×N ], which often

4 Note that 	1 has the form (3.3) with weights θ(ω, ω′) = |E(τ )|−1.
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induces significant changes in the objective and hence a very low probability to move uphill
at low temperatures.

4.2 Type-2moves (optimal fluencemoves)

To improve the mixing rate compared with type-1 moves, a natural idea is to reduce the beam
sample-space while encouraging moves toward minima. A first step in this direction is to
set the fluence of the candidate beam b′� := (τ, e, n) so as to obtain the smallest possible
objective value when the trajectory τ and the energy e are fixed. That is, we set n equal to

nω\� (τ, e) := arg min
ν∈N U (ω\�(τ, e, ν)), (4.3)

whereω\�(τ, e, ν) denotes the treatment plan obtained by replacing the beam b� of the current
state ω by (τ, e, ν).5 This choice is interesting because the function

x ∈ R �−→ U (ω\�(τ, e, x)) (4.4)

is a polynomial of degree 2 whose coefficients can be computed with negligible overhead
(details for computing the optimal fluence nω\� (τ, e) are given in Sect. 5.3). The correspond-
ing communication matrix, denoted by 	2, is defined by

	2(ω,ω′) :=
⎧
⎨

⎩

K−1

|T |·|E(τ )| if ω′ ∈ S2(ω),

0 if ω′ /∈ S2(ω) ∪ {ω},
(4.5)

where S2(ω) is the set of feasible treatment plans that differ from ω by a single beam with
optimal fluence:

ω′ ∈ S2(ω) ⇐⇒
{

ω′ ∈ S1(ω),

(∀k)[b′k = bk or n′k = nω\k (τ
′
k, e
′
k)
] (4.6)

(τ ′k , e′k , and n′k are the trajectory, energy and fluence of b′k , the kth beam of ω′). We call a
move from ω to ω′ ∈ S2(ω) a type-2 move.

Despite their appeal, type-2 moves cannot be used alone because 	2 is not irreducible
and does not have symmetric support; indeed:

(i) there exist inaccessible states, simple examples of which are the treatment plans ω̆(n) :=
((τ, e, 0), . . . , (τ, e, 0), (τ, e, n)) whose beams have the same trajectory and energy and
are all inactive except for one with a fluence n smaller than argminν∈N U (ω̆(ν)) ;

(ii) the implication ω′ ∈ S2(ω) �⇒ ω ∈ S2(ω′) holds for all ω′ only if every beam bk of ω

is such that nk = nω\k (τk, ek).
6

A way around this problem is to allow occasional type-1 moves using the mixed communi-
cation mechanism

	2,η := (1− η)	2 + η	1, (4.7)

5 Although the possibility cannot be excluded, the argument of the minimum in (4.3) is unlikely to contain
more than one element; so we assume it is a singleton for simplicity.
6 Therefore {S2(ω)}ω∈� is not a neighborhood system.
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where η ∈ (0, 1) is the probability of choosing a type-1 rather than a type-2 move. Since
S2(ω) ⊂ S1(ω) for all ω, we have 	2,η(ω,ω′) > 0 ⇐⇒ ω′ ∈ S1(ω) whenever ω �= ω′,
so 	2,η inherits the irreducibility and symmetry of 	1. In practice, a state ω′ is drawn from
the probability distribution 	2,η(ω, ·) as follows:

choose � ∈ [1 . . K ] u.a.r.
set b′k ←− bk for all k �= �

choose τ ∈ T , e ∈ E(τ ) and κ ∈ [0, 1] u.a.r.
if κ < η then choose n ∈ N u.a.r.
else set n←− nω\� (τ, e)
end(if)
set b′� ←− (τ, e, n)

Obviously, η should be chosen small enough to fully benefit from type-2 moves (e.g., η =
0.01, as in our experiments).

4.3 Type-3moves (semi-optimal energy-fluencemoves)

As an extension of type-2moves,we can think of further reducing the size of the beam sample-
space by simultaneously optimizing the energy and fluence. The problem to be solved at each
iteration is then the following: given an index � and a trajectory τ , find an energy-fluence
pair (e, n) such that

U (ω\�(τ, e, n)) = min
(ε,ν)∈E(τ )×N U (ω\�(τ, ε, ν))

= min
ε∈E(τ )

U (ω\�(τ, ε, nω\� (τ, ε))).
(4.8)

Because of the intricate relationship between deposited dose and beam energy, this task
requires computing the whole set of optimal fluences {nω\� (τ, ε)}ε∈E(τ ). Therefore, even
though nω\� (τ, ε) is fast to obtain, the cost of computing the optimal energy-fluence pair can
become prohibitive as the energy increment δe [see (2.1)] decreases. Setting a lower bound
on δe to limit the computational burden is not a viable option, since it affects the precision
of Bragg peak positioning and hence the conformity to the dose plan. We propose instead to
restrict the set of possible energies E(τ ) in (4.8) to subsets of the form

Ep, j (τ ) := {p(l + j)δe
}
l∈N ∩

[
emin(τ )− δe, emax(τ )+ δe

]
, (4.9)

where p ∈ [1 . . |E(τ )|] and j is the realization of a uniform discrete random variable on
[0 . . p−1]. The collection {Ep, j (τ )} j∈[0.. p−1] is a partition of E(τ ) into p interlaced subsets
of equispaced energies, each of size � p−1|E(τ )|� or �p−1|E(τ )|�. So on the one hand, the
computational cost is controlled by the parameter p, and on the other hand, the precision of
Bragg peak positioning is not affected because no energy value is discarded.

Let p ∈ N
∗. Given the current state ω, we say that b′� := (τ, e, n) is a type-3 candidate

beam if (e, n) minimizes the partial objective (ε, ν) �−→ U (ω\�(τ, ε, ν)) over Ep, j (τ )×N
for some j ∈ [0 . . p − 1]. Let S3,p(ω) be the set of treatment plans that differ from ω by a
single type-3 candidate beam. Using the definition of S2 in (4.6), we have

ω′ ∈ S3,p(ω) ⇐⇒
{

ω′ ∈ S2(ω),

(∀k)[b′k = bk or e′k ∈ {eω\k ,p, j (τ
′
k)} j∈[0.. p−1]

]
,

(4.10)
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where eω\k ,p, j (τ ) denotes the energy of the best candidate beam in the sample space {τ } ×
Ep, j (τ )×N :7

eω\k ,p, j (τ ) := arg min
ε∈Ep, j (τ )

U (ω\k(τ, ε, nω\k (τ, ε))). (4.11)

We call a move fromω toω′ ∈ S3,p(ω) a type-3 move; the associated communication matrix,
say 	3,p , has the same form as 	2, but with smaller support:

	3,p(ω,ω′) :=
⎧
⎨

⎩

K−1

|T | p if ω′ ∈ S3,p(ω),

0 if ω′ /∈ S3,p(ω) ∪ {ω}.
(4.12)

As for type-2 moves, 	3,p is neither irreducible nor has symmetric support, a problem
overcome by allowing occasional type-1 moves. This leads to the mixed communication
mechanism

	3,p,η := (1− η)	3,p + η	1, η ∈ (0, 1), (4.13)

which is implemented as follows:

choose � ∈ [1 . . K ] u.a.r.
set b′k ←− bk for all k �= �

choose τ ∈ T and κ ∈ [0, 1] u.a.r.
if κ < η then

choose e ∈ E(τ ) and n ∈ N u.a.r.
else

choose j ∈ [0 . . p − 1] u.a.r.
compute nω\� (τ, ε) for every ε ∈ Ep, j (τ )

set e←− eω\�,p, j (τ )

set n←− nω\� (τ, e)
end(if)
set b′� ←− (τ, e, n)

The use of type-3 moves should be viewed as a speed-up technique rather than a heuris-
tic. Indeed, the mixed communication mechanism 	3,p,η preserves the global convergence
properties of SA and does not discard any energy value; so neither optimality nor accuracy
is traded for speed. We could speak of a heuristic if we restricted E(τ ) to a subset Ep, j (τ )

with a fixed j , because it would decrease the cost of computing a type-3 candidate beam by a
factor of p but would also degrade the depth resolution by the same factor. Instead, we pick
j u.a.r. so as to consider all the energy partition blocks Ep, j (τ ). In this way, type-3 candidate
beams have optimal energy and fluence with probability p−1, and so depth resolution is not
degraded.

The smaller p, the greater the tendency to move downhill. However, it is important to
emphasize that type-3 moves are not necessarily downhill, even when p = 1. The fact that
a type-3 move from ω to ω′ := ω\�(τ, e, n) is uphill can be written as

U (ω\�)−U (ω) > U (ω\�)−U (ω′), (4.14)

whereω\� denotes the treatment plan obtained by deactivating the �th beam (that is, by setting
its fluence to zero); in other words, the variation in the objective resulting from deactivating
the �th beam is larger for ω than for ω′. This occurs, for example, when the following
conditions are met:

7 Again, for simplicity, we assume that the argument of the minimum is a singleton.
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(i) the beam b� in ω does not intersect any OAR, and the dose delivered by ω is below the
prescribed dose in all the PTV voxels intersected by b� [so U (ω\�)−U (ω) > 0];

(ii) the type-3 candidate beam b′� enters through an OAR, and the dose delivered by ω\� is
above the prescribed dose in all the PTV voxels intersected by b′� [in which case the
optimal fluence is zero, so U (ω\�)−U (ω′) = 0].

4.4 Dynamic exploration strategy

The number p of energy partition blocks in type-3 moves balances the mixing rate and the
computational cost: the smaller p, the higher the acceptance rate, but the more expensive the
iterations. The optimal value of p, however, depends on the irradiation geometry and can only
be found empirically. To avoid having to choose p, we propose using a dynamic mechanism
in which p decreases with decreasing temperature—the rationale is that making efforts to
find optimal candidate beams in the high-temperature regime is a waste of time, since most
moves are accepted due to the high acceptance rate. Conversely, encouraging moves toward
localminima in the low-temperature regimemaintains a reasonable acceptance rate and hence
increases the performance of SA.

Our final strategy for exploring the state space consists of the mechanism (4.13) with p
decreasing at each temperature stage of a piecewise-constant cooling schedule of the form
(3.13). More specifically, we use a sequence of communication matrices

(	3,pm ,η)m∈[1..M], pm := pmax −
⌈
(αm,M )β(pmax − 1)

⌋
, (4.15)

where pmax is the initial number of energy partition blocks, �·� is the nearest integer function,
and the exponent β > 0 controls the decreasing rate of pm .8 An important point is that the
performance of SAwith the communication sequence (	3,pm ,η)m is not sensitive to the choice
of pmax and β. Indeed, we can fix the values of these parameters regardless of the irradiation
geometry and achieve performance similar to that obtained using the static mechanism	3,p,η

with an optimal (geometry-dependent) value of p.
At the beginning of the annealing process, type-3moves should involve only a few energies

so that the iterations are cheap. So we set pmax to half the average number of energies per
trajectory, that is,

pmax :=
⌈
1
2 |E|
⌉
. (4.16)

On the other extreme, pm = 1 in the last temperature stage (i.e., when 1+ ξ−1 < M−1m �
1), so the annealing process ends with optimal candidate beams at the price of expensive
iterations. Therefore the exponent β balances speed and accuracy: the smaller β, the faster
pm decreases, and thus the higher the computational cost and the expected quality of the
solution. According to our experience, β = 0.2 is a consistently good compromise.

5 Implementation details and computational cost

The computational complexity of SA is dominated by the evaluation of the variations in the
objective caused by the moves in the search space. Here we focus on this critical task for
the objective defined in Sect. 2 and the communication mechanisms described in Sect. 4.
For clarity and completeness, we begin with a brief description of the physical dose model,

8 The sequence (pm )m∈[1..M] is also piecewise constant, with a number of plateaus less than or equal to the
number of temperature stages.
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which is similar to the one proposed in [12]. We then follow the same steps as in Sect. 4:
each analysis is built upon the previous one, starting with type-1 moves and concluding with
the proposed dynamic exploration strategy.

5.1 Simulation of the physical dose

To compute the deposited doses D(v, bk), we consider particle beams with Gaussian fluence
profile and negligible lateral scattering.9 A beam b is modeled by a finite set {b(i)}i∈I
of parallel rays whose positions are obtained by sampling the transverse plane of b using
concentric mapping. Let σ be the standard deviation of the fluence profile, usually specified
via the full width at half maximum FWHM = 2σ(2 log 2)1/2. The fluence contributions
γ (b(i)) of the rays are defined by

⎧
⎨

⎩

γ (b(i)) ∝ exp
(− 1

2 (ρ(b(i))/σ )2
)
,∑

i∈I
γ (b(i)) = 1, (5.1)

where ρ(b(i)) is the radial position of b(i) with respect to the trajectory of b. For every
voxel v and every ray b(i) intersecting v, we denote by din[v, b(i)] and dout[v, b(i)] the
water-equivalent penetration depths corresponding to the entry and exit points of b(i) into
and out of v, respectively. The dose deposited by b := (τ, e, n) in v depends linearly on the
fluence and nonlinearly on the energy:

D(v, b) ∝
∑

i ∈I : b(i)∩v �= ∅
nγ (b(i))

(
E(e, dout[v, b(i)])− E(e, din[v, b(i)])), (5.2)

where E(e, ·) is the cumulative depth-dose profile for the energy e [that is, E(e, d) is the
energy loss at depth d for particles with energy e] and the proportionality factor depends on
the mass of tissue in v.

At energies below or about 150MeV u−1, the depth-dose profiles ∂E(e, ·)/∂d have very
sharp Bragg peaks, making it more difficult to deliver a smooth dose distribution at small
depths. A simple and effective way to avoid this problem is to smooth the longitudinal dose
distribution using a passive, static beam-shaping element called a ripple filter [65]. The use
of a ripple filter is easily accounted for by replacing the cumulative depth-dose profile E(e, ·)
in (5.2) by the smoothed version

Ẽ(e, d) := a−1
∫ a

0
E(e, d + f (x))dx, (5.3)

where the function f : [0, a] → R+ represents the periodic groove profile of the filter (a
is the half-period of this profile). Figure 1 illustrates the effect of a ripple filter on the dose
deposited in water by carbon-ion beams.

The cumulative depth-dose profiles are precomputed by Geant4 Monte Carlo simulations
[66] and stored in memory after being transformed as in (5.3). Therefore, the major part of
the computation time for estimating the deposited doses is consumed in calculating ray-voxel
intersections. This can be avoided by storing the set of fluence-normalized doses deposited
in all voxels for all trajectories and energies, that is, the set

D := {D(v, (τ, e, 1)) : v ∈ V, (τ, e) ∈ T ⊗ E
}
. (5.4)

9 This approximation is justified for charged particles, with a greater accuracy for heavy ions such as carbon
than for light ions such as protons.
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Fig. 1 Effect of a 2 mm ripple filter on the dose deposited in water by 12C-ion beams with a 4 mm FWHM: a,
b 150 and 300MeV u−1 unfiltered beams; c, d 150 and 300MeV u−1 beams modulated by the ripple filter

In the computational cost analyses given in the following sections, we distinguish between
the case where D is stored in memory and the case where it is not because of insufficient
capacity.

5.2 Type-1moves

Let V(b) denote the set of voxels in V intersected by a beam b (this set is defined by the
trajectory and the radius of b), and let b′� := (τ, e, n) be a candidate beam defining a move
from ω to ω′ ∈ S1(ω). Then

U (ω′)−U (ω) =
∑

v ∈V(b�)∪V(b′�)
δD(v, �)

(
δD(v, �)−�D(v)

)
, (5.5)

where
δD(v, �) := D(v, b′�)− D(v, b�) (5.6)

and

�D(v) := 2

(
D�(v) −

∑

k∈[1..K ]
D(v, bk)

)
. (5.7)

This suggests to store the sets

D(ω) :=
⋃

k∈[1..K ]

{
D(v, bk)

}
v∈V(bk )

(5.8)

and
�D(ω) := {�D(v)

}
v∈V (5.9)

and update them as follows: if the move from ω to ω′ is accepted, then set

�D(v) ←− �D(v)− 2δD(v, �) for all v ∈ V(b�) ∪ V(b′�) (5.10)
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to first obtain �D(ω′), and set

D(v, b�) ←− D(v, b′�) for all v ∈ V(b′�) (5.11)

to obtain D(ω′). In this way, given D(ω), �D(ω), and the set of deposited doses

D(b′�) := {D(v, b′�)}v∈V(b′�), (5.12)

the number of flops10 for computing the variation (5.5) is

N�U (ω,ω′) := 2 |V(b�)� V(b′�) | + 3 |V(b�) ∩ V(b′�) |, (5.13)

where� is the symmetric difference operator [i.e.,A�B := (A∪B)\(A∩B)]. Furthermore,
if the dose differences (5.6) are stored during the computation of (5.5), the number of flops
for updating �D(ω) to �D(ω′) is

N�D(ω,ω′) := 2 |V(b�) ∪ V(b′�) |. (5.14)

The cost of computing the set of deposited doses D(b′�) depends on whether the set D of
fluence-normalized doses [see (5.4)] is stored in memory. If so, computing D(b′�) requires
only |V(b′�)| multiplications,11 and therefore the number of flops for implementing a type-1
move is

N1(ω,ω′) := N�U (ω,ω′)+ N�D(ω,ω′)+ |V(b′�)|
= 4 |V(b�)| + 5 |V(b′�)| − 3 |V(b�) ∩ V(b′�) |.

(5.15)

In contrast, if D cannot be stored in memory, computing D(b′�) makes up the bulk of the
load: the number of flops required in addition to N1(ω,ω′) is

ND ,1(ω,ω′) ≈ (3+ Nd)
∑

v∈V(b′�)

∣∣{i ∈ I : b′�(i) ∩ v �= ∅}∣∣

= (3+ Nd)
∑

i∈I
|V(b′�(i))|,

(5.16)

where Nd is the average number of flops for computing the entry and exit depths of a ray into
a voxel, and where V(b′�(i)) denotes the set of voxels intersected by the i th ray of b′�.

5.3 Type-2moves

Let τ and e be the trajectory and energy of a candidate beam b′� defining a move from ω to
ω′ ∈ S2(ω). The optimal fluence nω\� (τ, e) is obtained by finding the global minimum ν� of
the function of a real variable (4.4) and then setting

nω\� (τ, e) :=

⎧
⎪⎨

⎪⎩

�δ−1n ν��δn if ν� ∈ [0, nmax],
0 if ν� < 0,

nmax if ν� > nmax.

(5.17)

Therefore the computational cost of implementing a type-2 move is essentially that of a type-
1 move plus that of finding ν�. Let b := (τ, e, 1), so that D(v, b) is the fluence-normalized

10 Throughout the paper, flops is the plural of flop (an elementary floating point operation) and is not to be
confused with “flops per second”.
11 We recall that D(v, b′

�
) is the product of the fluence of b′

�
and the fluence-normalized dose D(v, (τ, e, 1)).
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dose deposited in v by b′�. It is not difficult to see that ν� is the minimum of the second-order
polynomial

x ∈ R �−→
∑

v∈V(b′�)

(
x2D2(v, b)− xD(v, b)

(
2D(v, b�)+�D(v)

))
, (5.18)

that is,

ν� =
( ∑

v∈V(b′�)
D(v, b)

(
2D(v, b�)+�D(v)

))(
2
∑

v∈V(b′�)
D2(v, b)

)−1
. (5.19)

Suppose the values of the denominator in this expression are precomputed and stored for all
trajectory-energy pairs (τ, e) ∈ T ⊗ E . If D is in memory, the computation of ν� requires
4 |V(b′�)| flops, which is roughly half the cost of a type-1 move.12 If D is not in memory, we
must compute the fluence-normalized doses D(v, b) for all v ∈ V(b′�) to obtain ν�, making
the deposited doses D(v, b′�) = nω\� (τ, e)D(v, b) simultaneously available to evaluate the
objective variation (5.5). Hence the number of flops required in addition to N1(ω,ω′) +
ND ,1(ω,ω′) is also 4 |V(b′�)| , which is negligible compared to ND ,1(ω,ω′).

5.4 Type-3moves

Unlike type-2 moves, type-3 moves are much more expensive than type-1 moves, because
the optimal fluence must be computed for each energy considered. Let τ be the trajec-
tory of a candidate beam b′� defining a move from ω to ω′ ∈ S3(ω). Since the size of an
energy partition block Ep, j (τ ) is � p−1|E(τ )|� or �p−1|E(τ )|�, we can simply assume that
|Ep, j (τ )| = �p−1|E(τ )|� for all j .

IfD is in memory, the cost of a type-3move is that of a type-1move plus that of computing
the optimal fluences nω\� (τ, e) for all e ∈ Ep, j (τ ); so the number of flops for implementing
a type-3 move is

N3,p(ω,ω′) ≈ N1(ω,ω′)+ 4 |V(b′�)|�p−1|E(τ )|�. (5.20)

IfD is not inmemory,wemust compute the fluence-normalized doses D(v, b), b := (τ, e, 1),
for all v ∈ V(b′�) and e ∈ Ep, j (τ ). To do this, we exploit the fact that the entry and exit depths
din[v, b′�(i)] and dout[v, b′�(i)] need to be computed only once regardless of the energy. The
number of flops required in addition to N3,p(ω,ω′) is then

ND ,3,p(ω,ω′) ≈ (3�p−1|E(τ )|� + Nd)
∑

i∈I
|V(b′�(i))|. (5.21)

5.5 Dynamic exploration strategy

We conclude the computational complexity analysis with the dynamic exploration strategy
based on the communication sequence (	3,pm ,η)m described in Sect. 4.4. The communication
matrix 	3,p,η consists mainly of type-3 moves and incorporates type-1 moves with a small
probability η; so the average computational cost for implementing a move using 	3,p,η is
almost the same as that of a type-3 move. The costs given below are average numbers of
flops, as indicated by the overline notation.

12 Most of the time, V(b�) ∩ V(b′
�
) = ∅ or |V(b�) ∩ V(b′

�
) |  |V(b�)| + |V(b′

�
)| (unless the center axes

of b� and b′
�
are parallel and close to each other), and so N1(ω, ω′) ≈ 4 |V(b�)| + 5 |V(b′

�
)|.
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Let |V(b)| denote the average number of voxels intersected by a beam over all allowed
trajectories. If D is in memory, then, by (5.15), the cost of a type-1 move is N 1 ≈ 9 |V(b)|.
It follows from (5.20) that the cost of a type-3 move is

N 3,p ≈
(
9+ 4 p−1|E|)|V(b)|. (5.22)

Let R denote the beam-to-voxel cross-section ratio:

R := π(ς−1ρmax)
2, (5.23)

where ς is the voxel size and ρmax is the beam radius. IfD is not in memory, then, by (5.21),
the additional cost is

ND ,3,p ≈
(
3 p−1|E| + Nd

)
R−1|I| |V(b)| (5.24)

(we assume that the voxels are isotropic). Since p−1|E| ranges between 2 and |E| during the
optimization process, it follows that

3

4
R−1|I| <

ND ,3,p

N 3,p
� 6+ Nd

17
R−1|I|. (5.25)

So storing D reduces the computational cost by a factor of the order of R−1|I|.

6 Tuning of the cooling schedule

Tuning a finite exponential cooling schedule (Tm,M )m∈[1..M] [see (3.13)] consists in choosing
the initial and final temperatures T1,M =: Tmax and TM,M =: Tmin. This task is central to
the performance of SA: if Tmax is too low, the behavior of the SA algorithm is close to
deterministic, which usually leads to poor local minima; and if Tmin is too high, the final
state distribution ω ∈ � �−→ P(XM = ω) is not concentrated enough around deep minima,
meaning SA may terminate in a state not even close to a local minimum.

Practice shows that the probability to accept uphill moves should be close to one at
the beginning of the annealing process (for efficiently exploring the state space at high
temperatures) and close to zero when approaching the horizon M (for encouraging moves
toward nearby local minima when freezing). These observations form the basis of our criteria
for choosing Tmax and Tmin.

6.1 Criteria for choosing the initial and final temperatures

Recall that SA is defined by a family of transition matrices QT of the form (3.7). For any
T > 0, we letM(QT ) denote the homogeneous Markov chain with transition matrix QT [in
other words,M(QT ) is the Metropolis chain with landscape (�,	,U ) and temperature T ].
We define the acceptance rate ζ(T ) of M(QT ) to be the ratio of the probability of moving
uphill to that of proposing a move uphill when M(QT ) is at equilibrium; that is,

ζ(T ) :=
∑

(ω,ω′)∈ϒ νT (ω)	(ω,ω′) exp
(− T −1(U (ω′)−U (ω))

)

∑
(ω,ω′)∈ϒ νT (ω)	(ω,ω′)

, (6.1)

where ϒ := {(ω, ω′) ∈ �2 | U (ω) < U (ω′)} and νT is the stationary distribution of QT

(this distribution is unique since QT inherits the irreducibility of the communication matrix
	). Obviously, ζ is an increasing function of the temperature. Our approach to choosing
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the initial and final temperatures is as follows: given target acceptance rates ζmax and ζmin

such that 0 < ζmin  1
2 < ζmax < 1, find Tmax and Tmin such that ζ(Tmax) = ζmax and

ζ(Tmin) = ζmin.
It is worth noting that SA with exponential cooling is not significantly affected if Tmax is

too high or if Tmin is too low, meaning it performs well as long as the orders of magnitude
of the extremal temperatures are correct.13 The implications are twofold. First, we have
some latitude in setting the target rates (from our experience, we can safely take ζmax ∈
[0.7, 0.9] and ζmin ∈ [10−4, 10−3]). Second, Tmax and Tmin can be estimated using fast
approximate methods such as those proposed in [59]. However, a fair comparison of the
proposed communication strategies requires more accurate temperature estimates, which we
now describe.

6.2 Practical tuningmethod

Empirical evidence suggests that the relationship between the acceptance rate and the tem-
perature has the form

ζ(T ) ≈
{
1− a1/T b1 when ζ(T ) � 1

2 ,

a0T b0 when ζ(T ) is close to 0,
(6.2)

where (a1, b1) and (a0, b0) are pairs of positive constants depending on the landscape. This
model yields the initial and final temperature estimates

T̂max :=
(

a1
1− ζmax

)1/b1
and T̂min :=

(
ζmin

a0

)1/b0
, (6.3)

and now the problem is to determine (a1, b1) and (a0, b0).
Suppose we can estimate the acceptance rates ζl := ζ(Tl) at logarithmically spaced

temperatures
Tl := 2 p−l T ∗, l ∈ [1 . . q], (6.4)

where the integers p � 1 and q � 2 and the temperature T ∗ are such that

ζ1 = ζ(2 p−1T ∗) � ζmax and ζq = ζ(2 p−qT ∗) � ζmin (6.5)

(a safe choice is to let T ∗ be a rough estimate of Tmax computed as described in [59], set
p = 4, and adjust q accordingly). Then the pair (a1, b1) is easily obtained by fitting a
regression line to the points (log Tl , log(1− ζl)) such that ζl � 1

2 , and similarly for (a0, b0)
with the points (log Tl , log ζl) such that ζl < 1

2 .
Our approach to estimating ζ1, . . . , ζq is as follows. Let ω0 ∈ � be picked at random, and

let (Ml)l∈N be a strictly increasing sequence in N
∗, with M0 = 1. We monitor a realization

(ωm)m of the SA algorithm with cooling schedule

(2p−lm T ∗)m∈N∗ , lm := 1+max{l ∈ N : Ml � m } (6.6)

(that is, starting from T1, the temperature is divided by 2 each time m = Ml for some l � 1).
For each l � 1, the acceptance rate ζl is estimated from the portion of (ωm)m at the l th
temperature stage using the estimator

ζ̂l :=
∑

m∈[Ml−1 ..Ml−1] 1{U (ωm−1)<U (ωm )} exp
(− Tl−1(U (ωm)−U (ωm−1))

)

∑
m∈[Ml−1 ..Ml−1] 1{U (ωm−1)<U (ωm )}

. (6.7)

13 This observation does not apply to SA with logarithmic cooling.
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The iterations are terminated when ζ̂l � ζmin, determining the number of regression points
q . We call this simulation process the temperature-tuning chain, so as to distinguish it from
the tuned SA algorithm that subsequently minimizes the objective. The longer the lengths
Ml −Ml−1 of the temperature stages, the sharper the estimates ζ̂l , and so the closer ζ(T̂max)

and ζ(T̂min) to the target acceptance rates. Also, since the mixing time ofM(QT ) increases
with decreasing temperature, the difference Ml −Ml−1 should increase with l. A reasonable
choice is Ml − Ml−1 = μl−1L with μ ∈ ]1, 2] and L ∈ N

∗ such that the length of the
temperature-tuning chain, Mq = 1 + (μq − 1)L/(μ − 1), is some fraction of the horizon
M . We recommend that the minimum length L of the temperature stages be of the order of
the maximum communication distance between two states, so a sufficient number of uphill
transitions are available to estimate the first regression point. We also found empirically that
setting μ = 1.5 is a good compromise between the accuracy of the acceptance rates and
the computational cost of simulating the temperature-tuning chain. In fact, taking μ close to
1 provides effective cooling (meaning correct orders of magnitude for Tmax and Tmin), but
not enough accuracy to properly compare the performance of different SA algorithms. On
the other hand, increasing μ above 1.5 raises the accuracy to a level that has no measurable
impact on performance.

Finally, we note that the temperature-tuning chain must be slightly modified when using
a temperature-dependent exploration mechanism. In this case, the simulation process starts
with the initial communication matrix (e.g., 	3,pmax,η for the exploration strategy described
in Sect. 4.4) and switches to the final one (e.g., 	3,1,η) as soon as ζ̂l < 1

2 .
14

7 Numerical experiments

The experiments presented in this section demonstrate the feasibility of full ITP and highlight
the benefits of the proposed exploration strategy over less sophisticated ones. We also show
the benefits of full ITP over SIO and discuss the effect of the number of treatment beams per
fraction on the delivered dose distribution.

It is important to note that performance is defined not only by the quality of the computed
treatment plans (which can be measured using the objective function and other statistics of
the delivered dose distributions), but also by the computational load. So the underlying goal
is to find the best possible balance between quality and CPU time.

7.1 Irradiation geometries

We consider carbon-ion beams along with the irradiation geometries sketched in Fig. 2. The
calculation volume is a set of cubic voxels of size 1mm,with the PTV lying in a 2×3×4 cm3

rectangular boxB centered in a cylindrical volume of water with a radius of 60mm; the OAR
region is partially surrounded by the PTV for increased difficulty. Each beam is modeled by
|I| = 441 infinitesimal rays (see Sect. 5.1) and has a 4mm FWHM and a diameter of
8mm (the fluence contributions of the peripheral rays are about 6% of that of the center
ray). Furthermore, we simulate the use of a ripple filter so that the depth-dose profiles are
approximately Gaussian in their peak region [65].

The first geometry in Fig. 2b, called the reference geometry, is specifically adapted to
the shape of the PTV. It consists of |T | = 4.5 × 104 possible trajectories divided into four

14 The point (log Tl , log ζ̂l ) such that ζ̂l−1 � 1
2 and ζ̂l < 1

2 must then be discarded from the regression
data.
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Fig. 2 Numerical phantom and irradiation geometries: a PTV and OAR region; b reference geometry adapted
to the PTV (the small blue arrows schematize the allowed beam trajectories, of which only a small subset
constitutes a treatment plan); c fan-beam geometry (the face F1 is not irradiated); d random geometry (the
faces F1 andF2 are scarcely irradiated with small angles of incidence). (Color figure online)

subsets; in each subset, the trajectories are perpendicular to a face of B, orthogonal to the
x-axis, and evenly distributed with a spacing of 0.25mm (along either the x- and y-directions
or the x- and z-directions).

The second geometry in Fig. 2c, called the fan-beam geometry, is obtained by “stacking”
identical 2-D fan-beam geometries along the x-axis with a step size of 0.25mm. Each 2-D
fan-beam geometry consists of four sources positioned on a circle of radius 100mm with a
45◦ step angle. For each source, the beam angle increment is 0.2◦, totaling |T | = 4.2× 104

possible trajectories.
The third geometry in Fig. 2d, called the random geometry, consists of |T | = 4002 =

1.6× 105 trajectories generated from 400 source positions randomly sampled on a spherical
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cap subtending a solid angle of π steradians (this cap is centered on B and has a radius of
100mm) and 400 points randomly sampled in the PTV.

The artificial shape of the PTV makes ITP particularly challenging for the fan-beam and
random geometries, since obtaining a uniform dose distribution at the corners is difficult
when the allowed beam trajectories are not perpendicular to the faces of the PTV. The fan-
beam and random geometries have a further disadvantage in that they do not directly irradiate
all three faces of the PTV opposite to the OAR. Therefore it will be no surprise that the best
performance is obtained for the reference geometry. The reason for considering the fan-beam
and random geometries is to show that full ITP can produce acceptable treatment plans in
a nonstandard setting. In carbon-ion therapy, fan-beam geometries can be implemented in
treatment facilities with a rotating gantry and fast magnetic deflection units (see, e.g., [1]).
Random geometries are more prospective but will likely be implementable in the future
thanks to the ongoing progress in accelerator technologies [67].

Finally, note that in all three geometries, a significant number of beam trajectories enter
through the OAR. This is a deliberate choice to show that full ITP spares the OAR despite
potentially harmful trajectories.

7.2 Annealing algorithms

The state space � [see (2.3)] is defined by an energy increment δe of 1MeV u−1 (the cor-
responding depth resolution is about 0.625mm), a fluence increment δn of 104 particles,
and a maximum fluence nmax of 5 × 106 particles. The dose plan D� in the ITP objective
U : � → R [see (2.9)] is 2Gy in the PTV and 0 in the OAR. Except for Sect. 7.3.4, the
number of beams K is set to 600, and each SA algorithm specified below is run eight times
to obtain an 8-fraction treatment plan for a target prescription dose of 16Gy.15 In the case of
the random geometry, each run uses a different set of possible trajectories, as we found that
resampling T for each fraction yields a smoother dose distribution in the PTV.

We consider the increasingly sophisticated SA algorithms listed in Table 2,16 so we can
compare logarithmic versus exponential cooling and assess the efficiency of the communi-
cation mechanisms described in Sect. 4. Each algorithm starts from a random state ω0 ∈ �

(i.e., a random feasible treatment plan). The probability η of using type-1 moves in A2,exp

and A3,opt is set to 0.01, a choice that ensures irreducibility and symmetric support without
compromising the benefits of type-2 and type-3 moves. In A3,opt, the parameter β control-
ling the decreasing rate of pm (the number of energy partition blocks) is set to 0.2 to balance
speed and accuracy. These choices of the parameters η and β are empirical, but there is
some freedom in setting them. Indeed, as long as M is large enough (of the order of 103K ,
say) and the cooling schedule is properly tuned, we can arbitrarily choose η ∈ ]0, 0.1] and
β ∈ [0.1, 1] without significantly impacting performance (note that β = 1 is the threshold
below which pm decreases faster than linearly at each temperature change). Moreover, there
is no sharp drop in performance when η and β are outside these ranges. For a fixed β, the
performance decreases significantly only when η > 0.5, as A2,exp and A3,opt then behave
more likeA1,exp. Suppose now that η is fixed. In the limit β → 0, we have pm = 1 for allm,
and so each type-3 move examines all possible energy values. On the other hand, in the limit
β → +∞, we have pm = pmax for all m, and so each type-3 move examines two energy

15 The total number of distinct beam trajectories in such a plan is therefore at most 4800, which remains
much smaller than the number of possible trajectories |T |.
16 The subscript “opt” inA3,opt stands for “optimized” in reference to the incremental design of the proposed
exploration strategy, and “p.c.” stands for “piecewise constant”
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Table 2 Considered SA algorithms

Algorithm Communication matrix Cooling schedule

A1,log 	1 (Sect. 4.1) Logarithmic (3.9)

A1,exp 	1 Exponential (3.12)

A2,exp 	2,η (Sect. 4.2) Exponential

A3,opt 	3,pm ,η (Sects. 4.3–4.4) P.c. exponential (3.13)

values on average. In these two limit cases, A3,opt outperforms A2,exp, but less markedly
than for β ∈ [0.1, 1].

Note that since the neighborhood systems associated with the mixed communication
mechanisms 	2,η and 	3,p,η are identical to that of 	1,17 the different SA algorithms have
the same local minima with the same depths. Also, the communication distance is bounded
by K .

Following the recommendations in Sect. 6, the initial and final temperatures of exponential
cooling are selected to match the target acceptance rates ζmax = 0.8 and ζmin = 5 × 10−3,
respectively, using a temperature-tuning chain with parameters μ = 1.5 and L = K . In the
piecewise-constant case, we change the temperature every 2K iterations, that is, we set the
number of constant-temperature stages ξ to �M/(2K )�. (The choice of ξ , however, is not
critical: from our experience, a value of the order of 100 or larger yields stable performance.)
If the cooling is logarithmic, the final temperature is set to the samevalue as that of exponential
cooling, and thus the initial temperature is fixed by the horizonM [since Tmax = Tmin log(M+
1)/ log 2]; in this way, A1,log and A1,exp have the same final transition matrix QTmin and so
can be compared fairly.

7.3 Treatment planning optimization results

7.3.1 Comparison in terms of objective

Figure 3 plots the final objective value U (ωM ) versus CPU time when the horizon M of the
SA algorithms is increased exponentially.18 The CPU times correspond to Matlab imple-
mentations run on a single core of an Intel Xeon processor E5-2697 v2 with the set of
fluence-normalized doses D [see (5.4)] stored in memory19 (this requires about 27GB for
the reference geometry, 19GB for the fan-beam geometry, and 65GB for the random geom-
etry).

Overall, the performance in terms of objective increases with the sophistication of the
SA algorithm, which validates our incremental approach to designing the communication
mechanism. We make the following specific observations. First, exponential cooling speeds
up the optimization process by a factor of at least 10 relative to logarithmic cooling: the
solutions computed by A1,exp in 15mn or so have an average objective value smaller than

17 Because S3,p(ω) ⊂ S2(ω) ⊂ S1(ω) for all p ∈ N
∗ and ω ∈ �.

18 Plotting U (ωM ) versus M is of little interest because the different communication mechanisms have
different computational costs (see Sect. 5) .
19 WhenD is not stored in memory, the CPU time is multiplied by about 7× R−1|I| for A1,log and A1,exp,

4.8× R−1|I| for A2,exp, and 1.8× R−1|I| for A3,opt , where R = 16π is the beam-to-voxel cross-section
ratio [see (5.23)].
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Fig. 3 Final objective value versus CPU time for the SA algorithms in Table 2: a reference geometry; b fan-
beam geometry; c random geometry. Each algorithm is run eight times for each M ∈ {�2 i/2 × 100�; i � 5}
(the dashed curves connect the average objective values over each set of eight runs). The vertical dashed lines
indicate one-hour periods for a single core of an Intel Xeon processor E5-2697 v2

that of the solutions computed byA1,log in about 3 h. Second, type-2moves offer considerable
performance improvements over type-1moves: the objective values of the solutions computed
by A2,exp in less than 12mn are 15 to 30% lower than those of the solutions computed by
A1,exp in 3 to 4 h,which corresponds to a speed-up factor greater than 16. In fact, extrapolating
the average objective curves indicates that A2,exp is three orders of magnitude faster than
A1,exp. Third, the additional benefits brought by the optimized communication strategy used
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inA3,opt are less spectacular but still significant: for M sufficiently large, the speed-up factor
over A2,exp is greater than 8 for the reference and fan-beam geometries and about 1.5–2 for
the random geometry. These speed-ups are achieved for M greater than about 103K for the
reference and fan-beam geometries and about 2.5 × 103K for the random geometry (these
bounds correspond roughly to the third and fifth clusters of points in time order, respectively).
Furthermore, as can be seen from the dispersion around the curves, A3,opt is the most stable
of the four algorithms in terms of objective variance.

The results in Fig. 3 also show that the SA landscapes have many poor local minima
(namely, all the fraction plans computed by A1,log and A1,exp). Furthermore, these local
minima must be relatively deep, for otherwise there would not be such a performance gap
betweenA1,exp andA2,exp. From this viewpoint, the speed-ups achieved byA2,exp andA3,opt

measure the increased ability of the mixed communication mechanisms to climb out of local
basins.

7.3.2 Comparison in terms of dose distribution

Figures 4, 5 and 6 show, for each geometry, the dose distributions delivered by the 8-fraction
treatment plans computed byA1,log,A1,exp andA3,opt in one hour or so. Thedose distributions
are represented as follows (from left to right): average doses along the coordinate axes; xy,
yz and xz cross-sections; and 12Gy isosurface.20 We observe that exponential cooling and
optimized communication both improve the dose homogeneity and yield sharper dose fall-
off at the edges of the PTV. (The results obtained by A2,exp are not shown because they are
visually similar to those of A3,opt, but quantitative differences are highlighted below.) We
also see that the OAR is almost completely spared by the treatment plans obtained using
A3,opt; moreover, looking at the surroundings of the PTV shows that the trajectories that
enter through the OAR are properly discarded.

Table 3 gives some statistics of the 8-fraction treatment plans computed by the different
SA algorithms. These results should be interpreted in light of the fact that we use a smaller
number of beams than in a standard clinical setting. Indeed, in SIO, the beam spacing in
the directions perpendicular to the beam orientations and the average depth spacing should
be about half the FWHM, that is 2mm. For the 24cm3 PTV-OAR volume considered here,
this requires 3 × 103 beams (or spots) per orientation, that is 9 × 103 beams for a typical
number of 3 orientations—this is almost twice the number of beams of the presented plans
(600 beams per fraction for a total of 4800 beams).

We see that increasing sophistication consistently improves performance in terms of dis-
tance to the dose plan and dose homogeneity: the minimum and maximum PTV dose get
closer to the 16Gy target prescription dose, the standard deviation of the PTV dose decreases,
and so do the maximum, mean and upper quartile of the OAR dose.21 In agreement with the
observations made in the previous section, the most important improvements come from the
use of exponential cooling and type-2 moves, but the impact of the optimized communication
strategy is also significant. Note that although the fraction plans produced by the different
runs of a same SA algorithm have relatively close objective values (as seen in Fig. 3), they
are far apart in terms of communication distance. A consequence is that the deviations of the

20 An isovalue of 12Gy allows to visualize the locations outside the PTV where the delivered dose is greater
than 75% of the target prescription dose, which should be avoided as much as possible even though there is
no constraint outside the PTV and the OAR.
21 Since the dose plan is zero in the OAR, the mean and upper quartile are better indicators of performance
than the minimum and standard deviation.
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Fig. 4 Reference geometry: dose distributions delivered by the treatment plans computed by a A1,log, b
A1,exp, and c A3,opt (M = 3200K for A3,opt and 6400K otherwise). From left to right: average doses along
the coordinate axes; xy, yz and xz cross-sections; and 12Gy isosurface
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Fig. 5 Fan-beam geometry: dose distributions delivered by the treatment plans computed by a A1,log, b
A1,exp, and c A3,opt (M = 3200K for A3,opt and 6400K otherwise). From left to right: average doses along
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Fig. 6 Random geometry: dose distributions delivered by the treatment plans computed by aA1,log, bA1,exp,
and c A3,opt (M = 3200K for A3,opt and 6400K otherwise). From left to right: average doses along the
coordinate axes; xy, yz and xz cross-sections; and 12Gy isosurface
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Table 3 Statistics of the treatment plans computed by the different SA algorithms in similar amounts of time:
average CPU time per fraction; root-mean-square distance (RMSD) to the dose plan; minimum, maximum
and standard deviation of the PTV dose; maximum, mean and upper quartile (UQ) of the OAR dose

Algorithm

A1,log A1,exp A2,exp A3,opt

Reference geometry

CPU time 49mn 50mn 48mn 43mn

RMSD 1.60 0.76 0.55 0.47

PTV Min. 7.74 12.78 13.17 14.10

Max. 32.90 18.80 18.55 17.82

Std. dev. 1.80 0.69 0.49 0.40

OAR Max. 10.49 4.55 3.56 3.22

Mean 1.00 0.83 0.50 0.45

UQ 1.09 0.81 0.38 0.31

Fan-beam geometry

CPU time 54mn 55mn 52mn 52mn

RMSD 1.61 0.90 0.78 0.66

PTV Min. 8.57 11.75 12.04 13.04

Max. 30.73 19.97 18.76 18.16

Std. dev. 1.71 0.85 0.73 0.60

OAR Max. 10.03 5.58 5.54 4.74

Mean 0.98 0.77 0.59 0.56

UQ 1.11 0.80 0.56 0.53

Random geometry

CPU time 61mn 61mn 59mn 49mn

RMSD 1.01 0.89 0.70 0.67

PTV Min. 10.95 11.93 12.70 12.75

Max. 19.79 18.72 18.32 18.17

Std. dev. 0.90 0.83 0.66 0.62

OAR Max. 7.39 6.40 5.32 4.32

Mean 0.93 0.80 0.53 0.53

UQ 1.09 0.84 0.48 0.47

All dose statistics are expressed in Gy

fraction doses to the dose plan are poorly correlated, which has a smoothing effect on the
total dose delivered. As an example, consider the eight fractions ω(1), . . . ,ω(8) computed by
A3,opt for the reference geometry. A comparison of any two of these fractions shows that
they have at most one identical beam, meaning they are at maximum or second-to-maximum
communication distance from each other. The resulting smoothing effect is evidenced by the
standard deviation of the total PTV dose, which falls from about 0.80Gy when executing a
same fraction ω(i) eight times to 0.40Gy when executing ω(1), . . . ,ω(8).

Another way to assess the quality of a treatment plan is to look at the dose-volume
histograms [68] of the OAR and the PTV. The dose-volume histogram of a region of interest
R (or R-DVH, for short) is the complementary cumulative distribution of the dose in R,
that is, the function that assigns to each dose value D the relative volume of R that receives
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a dose greater than D. Ideally, the OAR-DVH should be 0 everywhere, and the PTV-DVH
should be 1 (or 100%) if D is smaller than the prescribed dose and 0 otherwise. So the
closer the OAR-DVH to the ordinate axis and the steeper the drop-off of the PTV-DVH at
the prescribed dose, the better the treatment plan. Figure 7 shows, for each geometry, the
OAR- and PTV-DVHs for the 8-fraction plans examined in Table 3. The difference in quality
between two plans can be measured by the area between their respective DVHs. We observe
that each added level of sophistication brings improvements in terms of both the OAR- and
PTV-DVHs. (Note that the ripples in the DVHs associated with A2,exp and A3,opt for the
reference geometry correspond to negligible modes of the dose distributions; indeed, since
the negative derivative of theR-DVH is the distribution of the dose inR, a step-like variation
in the DVH indicates a peak in the dose distribution.)

7.3.3 Full ITP versus SIO

In this section we show the benefits of full ITP over SIO. From now on, full ITP refers to
computing a treatment plan using the algorithm A3,opt described in Sect. 7.2.

The SIO geometry consists of three beam orientations with spherical angles (90◦, 90◦),
(−90◦, 0◦) and (90◦,−90◦). (These are the orientations entering the faces of the PTVopposite
to the OAR in Fig. 2b, certainly the best choice for the PTV-OAR configuration considered.)
The spots are distributed with a spacing of 2mm in the directions perpendicular to each ori-
entation and with a depth resolution of approximately 2.5mm corresponding to a 4MeV u−1
energy increment. The total number of beams—one for each spot—is 6780, which is about
40% more than for full ITP. The beam model is the same as before.

We performed SIO using SAwith a communication mechanism that picks a spot u.a.r. and
selects its candidate fluence value either u.a.r. or optimally (as in type-2 moves) with equal
probability. (Note that SIO is easy for SA, because when the trajectories and energies are
fixed, the objective is the restriction of a quadratic function to the finite set N K.) The dose
distribution delivered by the resulting treatment plan is shown in Fig. 8; it is clearly not
as smooth as those obtained by full ITP (compare with Figs. 4, 5 and 6c). Of course, the
conformity to the dose plan improves with decreasing spot spacing; but we limit the number
of spots for a fair comparison. The corresponding OAR- and PTV-DVHs are shown in Fig. 9
together with those obtained by full ITP for the reference geometry.

The statistics of the treatment plan computed by SIO are reported in Table 4. Comparing
these results with those in the last column of Table 3, we see that, regardless of the geometry,
full ITP performs much better than SIO in terms of all statistics except the maximum OAR
dose (yet the difference is negligible in the case of the reference geometry). But that is not all.
The last column of Table 4 gives the statistics of a 600-beam treatment plan obtained by full
ITP for the reference geometry (we simply multiplied the fluence field of a single fraction
ω(i) by 8 to match the 16Gy target dose). Remarkably, this sparse treatment plan is superior
to the one obtained by SIO, which shows that full ITP can drastically reduce the number of
spots needed for tumor coverage.

7.3.4 Effect of the number of beams

So far, the number of beams per fraction, K , has been kept constant, leaving aside the question
of its influence on treatment plan quality. As we will see below, the conformity to the dose
plan increases with K up to a point after which it remains approximately constant.

To assess the effect of the number of beams on dose homogeneity, we ran A3,opt for M =
3200K iterations with K ranging between 200 and 1400 (with a step of 25). Figure 10 shows
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Fig. 7 OAR- and PTV-DVHs for the treatment plans computed by the different SA algorithms: a reference
geometry; b fan-beam geometry; c random geometry. The vertical dashed lines indicate the target prescription
dose
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Fig. 8 Dose distribution delivered by the treatment plan obtained by SIO with 40% more beams than for full
ITP (namely 6780 against 4800). From left to right: average doses along the coordinate axes; xy, yz and xz
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Fig. 9 OAR- and PTV-DVHs for the treatment plans obtained by SIO with 6780 beams and by full ITP for
the reference geometry with 4800 beams

Table 4 Statistics of the
6780-beam treatment plan
obtained by SIO and of the
600-beam treatment plan
obtained by full ITP for the
reference geometry:
root-mean-square distance
(RMSD) to the dose plan;
minimum, maximum and
standard deviation of the PTV
dose; maximum, mean and upper
quartile (UQ) of the OAR dose

SIO Full ITP
(K = 6780) (K = 600)

RMSD 1.47 0.76

PTV Min. 9.45 12.08

Max. 21.18 21.13

Std. dev. 1.62 0.79

OAR Max. 3.20 3.55

Mean 0.81 0.44

UQ 0.87 0.37

All dose statistics are expressed in Gy

the final objective value U (ωM ) and the standard deviation of the dose delivered by ωM to
the PTV as functions of K for the reference geometry (the results for the other geometries are
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Fig. 10 Effect of the number of beams per fraction, K , on the final objective value and on the standard deviation
of the PTV dose for the reference geometry. Each point corresponds to a single-fraction plan computed by
A3,opt with M = 3200K

Table 5 Statistics of the
Nf -fraction treatment plans
computed by A3,opt (with
M = 3200K ) for the reference
geometry and a constant total
number of beams (NfK = 4800):
root-mean-square distance
(RMSD) to the dose plan;
minimum, maximum and
standard deviation of the PTV
dose; maximum, mean and upper
quartile (UQ) of the OAR dose

Nf 12 8 6 4
K 400 600 800 1200

RMSD 0.52 0.47 0.46 0.61

PTV Min. 13.88 14.10 14.07 13.24

Max. 17.97 17.82 21.72 25.21

Std. dev. 0.47 0.40 0.39 0.61

OAR Max. 3.17 3.22 3.09 3.07

Mean 0.45 0.44 0.48 0.51

UQ 0.33 0.32 0.36 0.43

All dose statistics are expressed in Gy and the best results are set in
boldface

similar). These two quality measures are highly correlated because the objective is the square
deviation between the delivered and prescribed dose, which is approximately proportional
to the variance of the dose delivered to the PTV (provided, as is the case here, that the
OAR receives negligible dose). We see that the quality of the computed treatment plan ωM

decreases with K and plateaus for K � 800. This shows that a horizonM linear in K does not
compensate for the increase in optimization difficulty caused by increasing K above some
threshold. Unfortunately, this threshold is geometry-dependent and costly to estimate, and
so is the relationship between M and K yielding the best performance. As a rule of thumb,
our general experience with annealing suggests that the horizon should be of the order of 103

times the number of variables in the objective. Therefore, since U has 3K variables (three
parameters per beam), we recommend setting M between 103K and 104K .

Let Nf denote the number of computed fractions. The existence of a performance limit
when K increases and M is linear in K indicates that there is a computational compromise
between Nf and K when the total number of treatment beams (i.e., NfK ) is fixed and the
cumulative CPU time (i.e., the sum of the CPU times for all fractions) is bounded. For
example, Table 5 shows the effect of Nf on the delivered dose when NfK = 4800 and
the fractions are computed by A3,opt with M = 3200K (so the cumulative CPU time is
approximately constant). We see a significant decline in performance in terms of the RMSD,
the PTV statistics and the upper quartile of the OAR dose when K increases from 800 to
1200, which agrees with the plateau observed in Fig. 10.
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Finally, let us be clear that we do not suggest to choose the number of fractions based solely
on optimization results—in practice, the fractionation scheme and the dose per fraction are
prescribed by the radiation oncologist using insights from clinical trials and accounting for
radiobiological effectiveness. Note, however, that a fractionation scheme optimized for best
dose distribution can be easily adapted to clinical use: given a treatment plan T with Nf

different fractions computed by SA, we can define a new plan with N ′f identical fractions
consisting of the union of all the beams of T with their fluences scaled by 1/N ′f . This new
plan is uniform across fractions and leverages the smoothing effect described in Sect. 7.3.2.

8 Concluding remarks

We provided a proof of concept for full ITP in charged-particle therapy, which is to find opti-
mal beam trajectories, energies and fluences to irradiate a target tumor while sparing nearby
healthy structures. This combinatorial optimization problem is particularly challenging and,
except for our work in [57], has not been previously addressed. We proposed an original SA
approach whose exploration strategy exploits the linear dose-fluence relationship together
with interlaced energy partitioning. We also introduced a new technique to accurately esti-
mate the initial and final temperatures of the cooling schedule, which are crucial to the success
of annealing.

We tested the performance of increasingly sophisticated SA algorithms for different irra-
diation configurations: a reference geometry specifically adapted to the shape of the PTV,
and two generic geometries, the fan-beam and random geometries. The proposed approach
consistently and substantially outperforms SA with uniform candidate beams as well as SA
with optimal fluence moves. Moreover, the results obtained for the fan-beam and random
geometries are fairly close to those for the reference geometry: the differences in the RMSD
to the dose plan and in the standard deviation of the PTV dose do not exceed 0.22Gy—less
than 1.4% of the 16Gy target dose—which is quite small in view of the fact that the fan-beam
and random geometries are not tailored to the PTV and do not irradiate all three faces of
the PTV opposite to the OAR. This suggests some robustness with respect to the choice of
the irradiation geometry. We also observed significant improvements over SIO indicating the
potential to greatly reduce the number of treatment beams.

We saw in Sect. 5.5 that the average computation time per iteration increases with |E|
and |V(b)| (the average numbers of energies and beam-voxel intersections per trajectory),
both of which increase approximately linearly with |V|1/3 (assuming fixed-size isotropic
voxels). Using (5.22), it can be shown that for a fixed horizon M , the (total) computation
time is approximately linear in |V(b)| and affine in log |E|, and therefore O( |V|1/3 log |V|).
As discussed in Sect. 7.3.4, the horizon M must be at least linear in the number of treatment
beams K ; furthermore, K should increase linearly with |V| for proper tumor coverage. So
the computation time is at best O( |V|4/3 log |V|) and is currently of the order of one hour
for small tumors (4–5cm in diameter) and one day for large ones (8–10cm in diameter).
This is an obstacle for routine management of treatment planning. Potential remedies for
achieving clinically acceptable computation times (i.e., 15–20mn) include voxel clustering
[69], voxel sampling [70], parallel SA by multiple trials [71], and parallel SA using spec-
ulative computation [72,73]. Moreover, the generation of type-3 candidate beams can be
accelerated by parallel computation of the optimal fluences. Another limitation is the amount
of memory required to store the set of fluence-normalized doses D , that is approximately
4
3 R |V|1/3|T | |E| double precision elements. Storing D reduces the computation time con-
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siderably, but the downside is that the maximum number of allowed beam trajectories—and
hence the flexibility of the irradiation geometry—is limited by the size of the tumor and the
available memory.22

Our framework can be extended to objective functions of the more general form

U (ω) :=
∑

v∈V

⎛

⎝ϕv(D�(v)) −
∑

k∈[1..K ]
ϕv,τk ,ek (D(v, bk))

⎞

⎠

2

, (8.1)

where {ϕv}v∈V and {ϕv,τ,e}(v,τ,e)∈V×(T⊗E) are families of differentiable nondecreasing func-
tions and D(v, b) is defined as in Sect. 5.1. This allows to optimize the biological dose using
the linear-quadratic model or the microdosimetric kinetic model (see, e.g., [74]). And if the
dose model is computationally too expensive for stochastic optimization, the proposed SA
algorithm can always be used with a simplified model for properly initializing a deterministic
optimization pass with the full model.

Another avenue would be to augment the objective in order to enforce bounds on the
PTV dose and to better control OAR sparing. Let V0, . . . ,Vp be disjoint subsets of voxels,
with V0 representing the PTV and V1, . . . ,Vp representing different OARs. Let D0 denote
the prescribed dose and let D(v) := ∑k∈[1..K ] D(v, bk) be the dose deposited in a voxel
v by the kth beam of a treatment plan ω := (b1, . . . , bK ). Define the augmented objective
function

U †(ω) :=
∑

v∈V0

(
D0 − D(v)

)2 + λ0
∑

v∈V0

max
(
D(v)− Dmax, Dmin − D(v)

)

+
∑

j∈[1.. p]
λ j
(
c j max

v∈V j
D(v)+ (1− c j )mean

v∈V j
D(v)

)
,

(8.2)

where the weights λ j reflect the relative importance of the different structures, Dmin < D0

and Dmax > D0 are the prescribed minimum and maximum PTV doses, and each weight
c j ∈ [0, 1] balances the maximum and mean doses in the j th OAR. Each term in the last
sum corresponds to the linearized equivalent uniform dose model proposed in [75]. This
model allows to distinguish between parallel and serial OARs by setting c j close to 0 and
1, respectively.23 To minimize U †, the main modification of our methodology would be in
the computation of the optimal fluence for type-2 and type-3 candidate beams. We would
suggest to search for optimal fluences with respect to the quadratic part of U †, that is,

Q†(ω) :=
∑

v∈V0

(
D0 − D(v)

)2 +
∑

j∈[1.. p]
λ j (1− c j )mean

v∈V j
D(v). (8.3)

The reason is twofold. First, this strategy would not increase the computational cost. Second,
since Q† is obtained from U † by removing the minimum and maximum dose constraints,
Q†-optimal fluence moves leading to an excessive violation of these constraints would most
likely be rejected in the mid- and low-temperature regimes, and hence inconsequential.

22 To give an idea, consider for simplicity a spherical tumor of radius r (mm), 1mm3 isotropic voxels, and a
depth resolution of 1mm. In this caseD occupies about 30 (rρmax)

2 |T | bytes of memory, where ρmax is the
beam radius. So for a 60mm diameter tumor, a 4mm beam radius, and 120GB allocated to D , the irradiation
geometry is limited to approximately 1.5× 105 trajectories.
23 Parallel OARs tolerate high doses in small regions provided the mean dose received is small, whereas high
doses are harmful to serial OARs even when confined to small regions. Examples of parallel OARs include
the lung, kidney and liver; examples of serial OARs include the brain stem, spinal cord and esophagus.

123



Journal of Global Optimization

As a final remark, we note that

� ⊂ �′ �⇒ min
ω∈�U (ω) � min

ω∈�′
U (ω) (8.4)

for any sets � and �′ of feasible treatment plans. Therefore, since U (ω) is the square
deviation between the dose plan and the dose delivered by ω, increasing the number of
allowed beam trajectories improves the quality of the treatment plans that achieve the global
minima of the objective. This suggests gathering various irradiation geometries (T1, . . . , Tq ,
say) and searching for optimal plans over (

⋃
j∈[1..q](T j ⊗ E)×N )K . However, the global

geometry
⋃

j∈[1..q] T j is constrained by computational and memory resources and by the
fact that current ion-beam delivery systems cannot execute all feasible plans (for example,
those obtained from random geometries). Yet our numerical experiments show that benefits
can be expected from introducing randomness into the irradiation geometry, which motivates
research toward more flexible dose delivery systems in charged-particle therapy.
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