
The UMLS Knowledge Source Server

Anantha Bangalore
Karen Thorn

Outline

• Background

• Current System
• Design tenets
• System Architecture
• Authentication
• RMI & Socket Server API
• Web Access
• UMLSKS Object Model
• Drawbacks

Outline

• New System
• Introduction
• System Architecture
• Authentication
• Web Services
• Portal

• Demo

Background

• UMLS involves the development of a set of
widely distributed Knowledge Sources:
Metathesaurus, Semantic Network and
SPECIALIST Lexicon

• Can be used to compensate for the differences in
the way concepts are expressed in a variety of
biomedical vocabularies.

• Currently, over 1900 individuals and institutions
have signed the UMLS License Agreement,
enabling them to receive the UMLS data either on
CD-ROM or through the UMLS Knowledge
Source Server (UMLSKS)

Background

• UMLS is large and complex and presents
significant challenges in retrieving information in
a comprehensive way.

• Centrally managed UMLSKS provides system
developers with UMLS information remotely and
on demand.
• developers do not need to invest time and effort in

understanding the structure of the data files and other
details to use the UMLS data in their applications

Background

• First version of the internet based UMLSKS was
made available in 1995.

• Ran on a single server and was written in “C”
programming language.

• New system is written in Java and runs on
multiple servers.

• New system is more flexible, extensible, scalable
and provides better access to UMLS data.

Design tenets

• Extensibility for ease of new feature integration.

• Flexibility by providing a rich API set to allow
system developers access to all UMLS data
elements

• Access to data through multiple channels (web,
XML/socket API, and Java API)

• Provision of a unified data model for the
Knowledge Sources for use by application
developers.

Design tenets

• Scalability in handling ever increasing user loads
and increasing numbers of UMLS source
vocabularies

• Performance enhancement to provide fast access
to UMLS data

• Ease of administration by NLM staff and
contractors

System Architecture

• UMLSKS services can be accessed in three
different ways:
• Web

• Java API

• Socket-based API

• Data is returned in XML

• A set of classes that provide a data-centric
representation of the UMLS is provided with the
API and is capable of reading the XML .

System Architecture

Web
Client

UMLSKS API

RMI API
Client

Socket
API Client

UMLSKS
API

Web
Server

UMLSKS
API

Oracle
Database

RMI
Server

Socket
Server

RMI/XML

TCP/IP/XML

Http/Html

Authentication

• Username and password based authentication for
web users.

• API users have to register all IP addresses from
which they will potentially access the backend
server.
• Primitive and potentially unsecure

• Users using an ISP are not guaranteed to have the same
IP address every time.

• Better to have the same authentication mechanism
for all users. (web and API)

Web Access

• User issues http request to Web server

• Web server is implemeted as a collection of
servlets. (Tomcat, Turbine, Velocity)

• Web server issues request using Java’s Remote
Method Invocation (RMI) methodology to execute
a particular function.

• RMI server returns result in XML to web server.

• Web server applies XSLT stylesheets to XML to
convert it into HTML.

Access using Java API

• Establish connection to the backend RMI server.

• Make method calls directly from Java programs.

• Underlying communications mechanism is hidden
from the user

• Await receipt of XML response from server

• Server processes requests for Knowledge Source
data, accessing an Oracle® database .

• May use the object model to interpret returned
XML.

Java API Usage Example

• Retrieve Basic Concept information about the
concept Brain.

• Basic Concept information consists of :
• CUI

• Concept Name

• Definitions

• Semantic Types

• Term Information

• Source Information

Java API Usage Example

// 1) Establish connection to the UMLSKS server
KSSRetrieverV3_0 retriever = (KSSRetrieverV3_0)
java.rmi.Naming.lookup(“KSSRetriever”);

// 2) Request basic concept for CUI ‘C0000001’
char[] result = retriever.getBasicConceptProperties("2003AB",
"C0015967", null, "ENG, true);

// 3) Interpret the XML result into the Concept instance
Concept myConcept = new Concept(new String(result));

// 4) Print out the concept’s name
System.out.println(“Concept Name=’” + myConcept.getCN() +

“’”);

Access using Socket-based API

• Any programming language that supports socket
communication can be used.

• Clients establish socket connection to the TCP/IP
server

• Compose a UMLSKS API request in XML
format.

• XML API request resemble the Java API methods.

• Server sends request to RMI backend.

• Await receipt of XML response backend server.

XML Query example

<?xml version="1.0"?>
<getBasicConceptProperties version="1.0">

<release>2003AB</release>
<cui>C0001175</cui>
<sablist>

MSH

</sablist>
<language>ENG</language>
<noSuppressibles/>

</getBasicConceptProperties>

UMLS Object Model

• Previously application developers needed to
understand the relational data model in order to
abstract the UMLS contents into application level
components.

• Development of a single extensible object-
oriented data model of the UMLS will enable
developers to focus more on application code.

• Object-oriented data model lends well to extension
of functionality

UMLS Object Model

• Allows developer communities to develop and
share software extensions of the model.

• Each Knowledge Source has its own set of classes
that form an object-oriented view of the data.

Metathesaurus Object Model

• Metathesaurus object model makes explicit the
complex structure of the UMLS Metathesaurus in
a clear, understandable, navigable and extensible
way.

• The Meta Object model is composed of
approximately 60 classes representing the various
Metathesaurus components.

• Subset of these classes can interpret the XML
returned by the UMLSKS API methods and
instances of each class may be queried for the
details as returned from the method calls

Metathesaurus Object Model

ContextVector

ContextVector()
getInstance()
xmlize()
............

AssociatedExp
Vector

AssociatedExp
Vector()
getInstance()
xmlize()
………

Relation
Vector

Relation
Vector()
getInstance()
xmlize()
………

Definition
Vector

Definition
Vector()
getInstance()
xmlize()
…………

Concept

Concept()
getCUI()
getCN()
getTerms()
getDefs()
...............

LocatorVector

Locator
Vector()
getInstance()
xmlize()
.................

SemType
Vector

SemType
Vector()
getInstance()
xmlize()
................

TermAttribute
Vector

TermAttribute
Vector()
getInstance()
xmlize()
................

Cooccurrence
Vector

Cooccurrence
Vector()
getInstance()
xmlize()
…….

Semantic Type Object Model

• Semantic network Object model abstracts the
nodes within the network and provides methods to
extract details about each node.

• Classes also represent the network traversal
allowing the network structure to be queried.

• Thirteen classes that comprise the Object Model
for the Semantic Network provide XML
interpretation capabilities and containers for the
details of semantic nodes

Lexicon Object Model

• Lexicon is intended to be a general English
lexicon that includes many biomedical terms.

• Object Model for the SPECIALIST Lexicon
contains classes that can interpret the XML
generated by the associated UMLSKS API
accessing SPECIALIST Lexicon data.

Advantages

• New system permits quicker incorporation and
availability of new UMLS data set releases. (one
to two weeks)

• Faster and more reliable access to data by load
balancing across multiple servers.

• Rich set of API provides access to all of the
UMLS data.

• API’s can be incorporated into programs written
in any language for any platform.

Drawbacks

• Not possible to add new features without
completely rebuilding the entire server, stopping
and restarting the server.

• In case of API users non-standard ports have to be
opened on both the client and the server side. This
is increasingly becoming an issue with heightened
security restrictions on our side as well as for
clients (especially commercial companies).

• Have to maintain two servers on the backend:
• Rmi for Java Users
• Socket Server for Non Java users

Drawbacks

• Authentication on the backend is based on a
primitive model of restricting access based on IP
addresses.

• While the current interface based on XML and
XSLT stylesheets provide a great deal of
flexibility in quickly changing an existing
display, it will be nice to allow individual users
to tailor their own display for their own purposes.

New UMLSKS

• Backend is being implemented as a set of web
services.
• Fast becoming a commonly accepted standard.
• Address firewall issues
• Employ dynamic deployment mode of new

functionality
• Facilitate machine and API programming language

freedom
• Provides software framework for easier integration of

new feature

New UMLSKS

• Authentication for API users will be based on
username and password.
• Single Sign-on solution based on Yale’s CAS
• Uses a Kerberos type proxy ticket for granting access to
Backend web services

Web Interface is based on Portal Technology and
AJAX
• Allows building of dynamic custom views

• More interactive

System Architecture

• Tomcat is used as the deployment platform for all
the web services and the portlets.

• enables deployment without a restart of the
entire system

• Apache Axis is used for developing the web
services.

• New functionality may be added to the system
without impacting users currently connected to the
services

System Architecture
• Each web service is designed as a small set of

coherent, related classes that provide a focused set
of functions giving the software a small footprint
and allowing it to execute at a higher level of
performance

• Users can program against the Web services by
implementing a web services client.

• CAS server is used for authentication by both API
and web users. In case of API users, NLM will
provide a digital certificate that has to be stored on
the client site and used for accessing the Web
services on the server.

System Architecture

• Web interface is implemented using a Portal
framework

• Uportal – freeware portal framework

• JSR-168 Portlet API

• Can be customized by end-user both in look and
feel and in available content using applications
provided by the portal

System Architecture

CAS

• Single Sign On Solution based loosely on
Kerberos from Yale University

• Designed as a standalone web application
implemented as a set of Java servlets that run on a
secure web server.

• Can easily be configured to use many types of
authentication on the server side
• LDAP, UNIX, DB based

• Generates one use Proxy Ticket or a Proxy
Granting Ticket which can be used to generate
Proxy tickets .

CAS

Web
Service

CAS

Web
Browser

API
Application

TGA requestTGC

TGC request

TGA

Ticket

Ticket

Validate ticket

Web Services

• Web services as defined by Sun Microsystems are
“web-based enterprise applications that use XML-
based standards and transport protocols to
exchange data with calling clients.”

• Deployed using an Application server such as
Tomcat on port 80

• Apache Axis is an open-source, XML-based web
service framework that implements the Simple
Object Access Protocol (SOAP) to exchange XML
messages between software components.

Web Services
• UMLSKS components are developed and

deployed to Tomcat with Axis performing the
SOAP messaging between the client and web
service implementation.

• Significant decoupling of components and results
in multiple web services to perform the same
functions available in the current release.

• Single web service is deployed to handle requests
from users.
• accesses internal services that access each UMLS

release’s data, authorization, registry and logging
function

Web Services Client

• UMLSKS Webservice description Language
(WSDL)
• Defines the available operations from the UMLSKS

web service

• Configuration
• Service endpoint

• Invocation
• Stub-based model

• Dynamic Invocation Interface

Stub-based Model

• Axis WSDL2Java

• Builds stubs, skeletons and data types from the
UMLSKS WSDL

• Java client calls instantiated stub to connect to
service

• Java classed created that represent argument and
return types to the method calls

Dynamic Invocation Interface (DII)

• Dynamic creation of call to service

• Client creates Axis Service and Call objects

• Client registers argument types and return types
with call

• Client “invokes” call object to obtain results

UMLSKS Webservice Invocation

org.apache.axis.client.Service service = new Service();
org.apache.axis.client.Call call = (Call)service.createCall();

// Register the argument types
String namespaceURI = “http://umlsks.nlm.nih.gov”;
javax.xml.namespace.QName argName = new QName(namespaceURI,

“ConceptIdExactRequest");

call.registerTypeMapping(ConceptIdExactRequest.class, argName,
new BeanSerializerFactory(ConceptIdExactRequest.class, argName),
new BeanDeserializerFactory(ConceptIdExactRequest.class,

argName));

… (type mapping registration of remaining parent classes for the
argument type

UMLSKS Webservice Invocation

// Register the return object types

javax.xml.namespace.QName retName = new
QName(namespaceURI, “ConceptIdGroup");

call.registerTypeMapping(ConceptIdGroup.class, argName,

new BeanSerializerFactory(ConceptIdGroup.class,
argName),

new BeanDeserializerFactory(ConceptIdGroup.class,
argName));

… (type mapping registration of remaining parent classes
for the return type

UMLSKS Webservice Invocation

call.setTargetEndpointAddress(endpointURL);

call.setOperationName(new QName(namespaceURI,
“findCUIByExact"));

call.addParameter("arg1", argName, ParameterMode.IN);

call.setReturnType(retName, ConceptIdGroup.class);

Object[] args = new Object[1];

args[0] = request;

return (ConceptIdGroup)call.invoke(args);

Portal

• Web interface that can be customized by the end-
user both in look and feel and in available content
using applications provided by the portal

• Functions as an aggregator of portlets which can
be thought of as miniature Web applications that
run inside a portal page alongside any number of
similar entities.

• Portlet can be thought of as a miniature Web
application that is running inside of a portal page
along side any number of similar entities

Portal

• Each of the portlets generate fragments of mark-
up, which the portal container ultimately pieces
together to create a complete page

• Portlet registry, similar to the web services
registry, contains a list of available portlets

• Java Portlet Specification (JSR168) enables
interoperability for portlets between different web
portals

• open source, freely available portal framework
called uPortal was selected for the development of
our portal-based interface

AJAX

• AJAX (Asynchronous Javascript and XML)
allows creation on highly interactive sites.
• More responsive to users

• Allows the exchange of small amounts of data
with the server behind the scenes, eliminating the
need for the entire web page to be reloaded each
time the user requests a change.

• Increases the interactivity speed and usability of
web pages

AJAX

• Bandwidth usage
• HTML generated locally within browser using

javascript.

• Ajax web pages load relatively quickly since payload
coming down is smaller in size.

• Separation of data, format style and function

• Reliance on Javascript
• Not handled uniformly across all browsers.

Demo

	� �The UMLS Knowledge Source Server���Anantha Bangalore�Karen Thorn
	Outline
	Outline
	Background
	Background
	Background
	Design tenets
	Design tenets
	System Architecture
	System Architecture
	Authentication
	Web Access
	Access using Java API
	Java API Usage Example
	Java API Usage Example
	Access using Socket-based API
	XML Query example
	UMLS Object Model
	UMLS Object Model
	Metathesaurus Object Model
	Metathesaurus Object Model
	Semantic Type Object Model
	Lexicon Object Model
	Advantages
	Drawbacks
	Drawbacks
	New UMLSKS
	New UMLSKS
	System Architecture
	System Architecture
	System Architecture
	System Architecture
	CAS
	CAS
	Web Services
	Web Services
	Web Services Client
	Stub-based Model
	Dynamic Invocation Interface (DII)
	UMLSKS Webservice Invocation
	UMLSKS Webservice Invocation
	UMLSKS Webservice Invocation
	Portal
	Portal
	Slide Number 45
	AJAX
	AJAX
	Slide Number 48
	Demo

