
MetaMap Data File Builder

Willie Rogers, François-Michel Lang, Cliff Gay

December 31, 2015

Abstract

The MetaMap application is designed to au-
tomatically identify UMLS R© Metathesaurus R©
concepts referred to in free text[1][2]. Although
the UMLS focuses on biomedical information
sources, MetaMap’s algorithms are domain in-
dependent and can be used with any domain
providing adequate knowledge sources. The
MetaMap Data File Builder enables such cross-
domain utilization of MetaMap by allowing
users to create UMLS-like data models similar
to the actual UMLS data models normally used
by MetaMap.

1 Intended Use

We assume throughout this document that the full
MetaMap distribution and the Data File Builder dis-
tribution have been downloaded from

https://metamap.nlm.nih.gov/
#Downloads

and installed. Once the MetaMap distributions has
been installed, users have the option of customizing
the UMLS dataset or creating a dataset de novo.
There are three principal ways to create a MetaMap
knowledge base whose concepts the system is de-
signed to identify:

1. Full UMLS Metathesaurus: To use
MetaMap to map text to concepts in the

current version of the UMLS Metathesaurus,
there is nothing more to do beyond installing
MetaMap, because the application is bundled
with the latest version of the UMLS data. Full
UMLS data sets other than the one included
in the full MetaMap distribution (e.g., data
sets from earlier releases of the UMLS) are also
available from the same website given above.

2. UMLS Metathesaurus Subset: If copyright
issues preclude the use of certain vocabularies in
the MetaMap download, or if users want to fo-
cus on selected Metathesaurus vocabularies, one
should use MetamorphoSys1 to create an appro-
priate subset of the Metathesaurus and then use
Data File Builder to create a customized data set
that based based on the Metathesaurus subset.

3. Non-UMLS Database: Finally, in order to
to use MetaMap to identify concepts in knowl-
edge sources not based on the UMLS Metathe-
saurus, it is necessary to create from scratch a
special-purpose data set; this approach also re-
quires Data File Builder to create the database
files used by MetaMap.

2 The Problem

MetaMap requires knowledge sources contained in a
set of data files structured to facilitate rapid access to
domain information. During the process of preparing

1https://www.nlm.nih.gov/research/umls/

implementation_resources/metamorphosys/index.html

1

2 5. PLATFORM DIFFERENCES

these data files that make up MetaMap’s data model,
Data File Builder filters out certain terms and strings
that are unlikely to appear in normal English text
or be identified as concepts by MetaMap; removing
these data therefore enhances the performance of the
application. Some of the data files are word-index
files, which speed the mapping from strings to con-
cepts; one file contains MeSH treecodes that can be
included in the output to facilitate post-MetaMap
processing; finally, other files contain precomputed
lexical variants for strings in the knowledge base.

3 The Solution

We now explain how to use MetaMap’s Data File
Builder to create a special-purpose database. This
process involves three principal phases:

1. Creating a UMLS-like data set: The first
step creates a set of data files similar to
those available from MetamorphoSys (specifi-
cally the MetamorphoSys files MRCONSO, MRSAT,
and MRSTY)[3]. These data files must be ei-
ther extracted from the UMLS Metathesaurus
(e.g., using MetamorphoSys), or manually cre-
ated from scratch; in either case, however, they
must mirror the Metathesaurus files available
through MetamorphoSys in structure, format,
and semantics. Guidelines for creating these files
are provided in Section 7.

2. Generating MetaMap data files: The sec-
ond and most time consuming step actually runs
Data File Builder to convert the files created in
the previous step into a form supporting rapid
access to these data by MetaMap. This pro-
cessing is implemented by the Build Data Files
module, which comprises seven shell scripts that
call various GNU utilities and a specialized Java
program.

3. Loading the data files into a new database:
The third and final stage assembles the data files
created in the second stage into a final data set

indexed using Berkeley DB.2 Once this database
is created, it can be used for MetaMap process-
ing.

4 Document Roadmap

Section 5 explains of how to tailor the instructions
in this manual to specific operating systems (Solaris
and Linux). Section 6 provides a historical perspec-
tive for Data File Builder processing. Next, sections
7, 8, and 9 explain in greater detail the three pro-
cessing stages presented above. Section 10 presents
some troubleshooting tips, and the manual concludes
with section 11, which contains directions for using
MetaMap with the new database.

5 Platform Differences

5.1 Mac OS/X

Most but not all GNU utilities are available pre-
installed on Mac OS/X. Notably, GNU Sed and many
of the GNU Coreutils are not provided in the default
Mac OS/X installation. In many case non-compatible
BSD and SYS/V versions are supplied. GNU Sed and
Coreutils are described below:

GNU Sed This is a stream editor. A stream editor
is used to perform basic text transformations on
an input stream (a file or input from a pipeline).
The data file builder scripts are written to use
GNU sed rather than the original BSD/UNIX
Sed that comes with Mac OS/X.

GNU Coreutils The GNU Core Utilities are the
basic file, shell and text manipulation utilities
of the GNU operating system.

The source code to these utilities are available at
https://www.gnu.org/software/.

2http://www.oracle.com/technology/products/

berkeley-db/index.html

3

Pre-compiled (binary) versions of these utilities can
be obtained at the following:

Fink Project http://www.finkproject.org/

Mac Ports http://www.macports.org/

5.2 Linux

The Linux distribution includes the GNU text utili-
ties, so there is nothing additional to download and
install. You will be able to run the commands and
programs in these instructions from most shells (e.g.,
sh, csh, tcsh, bash).

6 Background

This section discusses the processing required to gen-
erate the data files to be used by MetaMap. Several
papers on the Reference Page of the MetaMap Por-
tal3 explain portions of the Data File Building pro-
cess in greater depth:

• Effective Mapping of Biomedical Text to the
UMLS Metathesaurus: The MetaMap Pro-
gram: This recent paper provides not only
a good overview of the processing available
with MetaMap, but also discusses the data-
maintenance process and variant generation. 4

• MetaMap Update Procedures: This paper de-
scribes the maintenance of MetaMap data files.
It was this process that was adapted for use with
MetaMap. 5

• Filtering the UMLS Metathesaurus for MetaMap
A critical part of the MetaMap Data File genera-
tion is the filtering out of certain strings from the
source files. A brief description of this process

3https://metamap.nlm.nih.gov/
4https://skr.nlm.nih.gov/papers/references/

metamap_01AMIA.pdf
5https://skr.nlm.nih.gov/papers/references/mm.

update.pdf

is provided below at the end of section 8.2, but
this paper explains manual filtering, the seven
kinds of lexical filtering, filtering by Metathe-
saurus term type (which is no longer done), and
finally syntactic filtering. 6

• MetaMap: Mapping Text to the UMLS Metathe-
saurus: Section 3 (Noun Phrase Variants, pp.
4-7) of this paper provides an explanation of
the role of variant generation in the MetaMap
matching algorithm. 7

7 Creating a Custom Dataset

Recall that if MetaMap is to be used with the full
UMLS Metathesaurus provided with MetaMap, there
is nothing to do beyond installing MetaMap. We
now explain the two methods of creating a custom
Metathesaurus-like data set:

1. Using a subset of the actual UMLS Metathe-
saurus, and

2. Creating one’s own customized knowledge base
from scratch.

This section explains both these approaches.

7.1 Create the Workspace

Data File Builder expects all the knowledge sources
to be in a common location, so one must first cre-
ate a workspace in which all processing will be done.
If the customized data source to be created will be
based on the UMLS, we suggest giving the workspace
a name that reflects the specific release year and ver-
sion of the UMLS Metathesaurus that will serve as a
basis for the custom data set. Specifically, we recom-
mend using the last two digits of the year version of

6https://skr.nlm.nih.gov/papers/references/

filtering08.pdf
7https://skr.nlm.nih.gov/papers/references/

metamap06.pdf

4 7. CREATING A CUSTOM DATASET

the UMLS joined by an underscore with a mnemonic
name (e.g. 02_meshonly). The following discussion
assumes that the full MetaMap distribution has been
downloaded and installed locally, as explained in Sec-
tion 1.

To create a workspace on Unix:

1. Decide what to call the version of data to be
used. For this example we will use 09_custom
as the workspace name.

2. After the full MetaMap distribution has been
downloaded and installed, there will be a direc-
tory called public_mm just below the directory
in which MetaMap was installed. We will refer
to this public_mm directory as $BASEDIR. First,
change directories to the $BASEDIR. directory:

cd $BASEDIR

3. Next, in the $BASEDIR directory, create a direc-
tory for the workspace:

mkdir sourceData/09_custom

4. Finally, Create a directory to store the knowl-
edge sources:

mkdir sourceData/09_custom/umls

7.2 Using a UMLS Metathesaurus
Subset

As noted in Section 1, there are two basic approaches
to creating customized knowledge sources. We next
describe the first approach, which involves creat-
ing a subset of the UMLS Metathesaurus knowl-
edge sources. The UMLS download provides a tool
called MetamorphoSys, which is the UMLS’ installa-
tion wizard and customization tool. MetamorphoSys
is included in every UMLS release, and allows users
to exclude and/or prioritize vocabularies in order to
comply with licensing restrictions and exercise some
control over naming of the Metathesaurus data. The
MetamorphoSys Fact Sheet can be found at

https://www.nlm.nih.gov/pubs/factsheets/

umlsmetamorph.html

The UMLS Knowledge Sources manual (the green
book) discusses the operation of MetamorphoSys in
section 6. This information is also available online at

https://www.ncbi.nlm.nih.gov/books/

NBK9682/

The remaining documentation makes the following
assumptions:

1. The latest UMLS release, including Metamor-
phoSys, has been downloaded to a directory de-
noted as $UMLS.

2. The $UMLS directory contains the Metamor-
phoSys download mmsys.zip file.

3. The mmsys.zip file has been unzipped by run-
ning unzip mmsys.zip.

4. Unzipping mmsys.zip deposited in the $UMLS di-
rectory files named

• linux_mmsys.sh,

• macintosh_mmsys.sh, and

• windows_mmsys.bat

When preparing a subset with MetamorphoSys for
use with MetaMap and the MetaMap Data File
Builder, designate the workspace as the location for
the target files.

To specify a MetamorphoSys configuration:

1. Move to to the $UMLS directory:

cd $UMLS

2. Execute the script tailored appropriate to your
operating system. For example, if running
Linux, type:

./linux_mmsys.sh

3. Select Install UMLS.

4. For the Destination click on Browse....

7.3. USING A NEW KNOWLEDGE SOURCE 5

5. Navigate the file browser until you can select the
$UMLS directory created earlier.

6. Click the Open button. The selected directory
should appear in the Destination box. Note:
You may not need to install the other Knowl-
edge Sources, so click on Semantic Network and
SPECIALIST Lexicon to deselect them.

7. Select OK and then choose the desired UMLS
subset.

8. When the UMLS MetamorphoSys Configuration
tool appears, select the Output Options tab.

9. In the “Select Output Format” box, click on the
“Browse” button and change the format to Rich
Release Format.

10. In the “Eliminate Extended Unicode Characters”
box, select option: “Remove records containing
extended UTF-8 characters”.

Complete the configuration of MetamorphoSys and
run it according its documentation. After Metamor-
phoSys finishes, confirm that the $UMLS directory
contains the files listed in the Required Files table
of the next section.

7.3 Using a New Knowledge Source

The previous section described how to extract a sub-
set of the UMLS Metathesaurus. This section now
describes the process of building data sources not
based on the UMLS Metathesaurus.

The goal is to create the files required to run the
Data File Builder scripts in order to create a valid
MetaMap database. Table 1 lists the files required,
which must be placed in the umls directory of the
workspace.

Preliminaries

As noted earlier, knowledge sources not based on the
UMLS Metathesaurus must still mirror the Metathe-

File When Required
MRCONSO.RRF always
MRSAT.RRF when treecode equivalent data is to

be presented.
MRSTY.RRF always
MRSAB.RRF always
MRRANK.RRF always
SM.DB always

Table 1: Required Files

saurus files available through MetamorphoSys in
structure, format, and semantics.

1. Synonymy: One of the fundamental bases of a
thesaurus is the clustering of synonymous terms
(i.e., text strings) into a single concept; for ex-
ample, in the 2013AA version of the UMLS
Metathesaurus, the concepts listed in each bul-
let below (among many others) are considered
synonyms:

• Myocardial Infarction; Attack Coronary ;
Heart attack ; Infarction of heart ; Infarc-
tion, Myocardial ; Infarct, Myocardial ; My-
ocardial Infarct

• Malignant neoplasm of lung ; Cancers,
Lung ; Cancer of the Lung ; Lung Cancer ;
malignant lung neoplasm; Malignant Lung
Tumor ; Pulmonary Cancer

• Oxygen Therapy Care; Inhalation Thera-
pies, Oxygen; Oxygen Inhalation Therapy ;
oxygen administration; oxygenation ther-
apy ; Therapy, Oxygen Inhalation; Warburg
Therapy

• Acetaminophen; 4-Hydroxyacetanilide;
Acetamidophenol ; Hydroxyacetanilide;
Paracetamol ; Paracetamol product ; p-
Hydroxyacetanilide

Because all the terms in each bullet above are
synonyms, identifying any one of them in input
text should produce semantically identical re-
sults; moreover, including synonymous concepts

6 7. CREATING A CUSTOM DATASET

in the database should improve recall. It is there-
fore essential to determine groupings among syn-
onymous terms. How exactly to represent syn-
onymy in the database files will be explained be-
low.

2. Preferred Names: For each group of synony-
mous concepts, one term should be designated
as the preferred name for each concept. In each
grouping above, the first concept is the preferred
name. We therefore say, for example, that Heart
attack is a synonym for the preferred name My-
ocardial infarction. Synonyms are also referred
to as non-preferred. The preferred name for each
concept is considered the one that best repre-
sents the concept in the vocabulary in question.
How to identify preferred names in the database
files will be explained below.

3. Unique Term Identifier: Select a unique iden-
tifier for each term in the knowledge source.
This unique term identifier is analogous to the
Metathesaurus’ SUI, and is typically a sequential
numbering of all terms (e.g., T00001, T00002,
T00003, etc.) We will call this unique identifier
the term id.

4. Unique Concept Identifier: Select a concept
id for each concept (i.e., each group of syn-
onymous terms) in the knowledge source. This
unique concept identifier is analogous to the
Metathesaurus’ CUI, and again is typically a se-
quential numbering of all concepts (e.g., D00001,
D00002, D00003, etc.).

We strongly recommend that you

1. use a consistent and mnemonic identification
scheme for the unique term and concept identi-
fiers following the example of the Metathesaurus,

2. use disjoint sets of identifiers for the unique
term identifiers (SUI-like IDs) and unique con-
cept identifiers (CUI-like IDs),

3. ensure that any SUI- or CUI-like IDs that you
create not be identifiers used by the Metathe-
saurus; for example, as noted above, you could

use strings beginning with D for your CUI-like
IDs, and strings beginning with T for your SUI-
like IDs.

Table Creation

We now present the outline of a process that can be
used for creating the required database tables from
a knowledge source. The following discussion will
assume that the data-organization recommendations
outlined above (synonymy, preferred names, SUI- and
CUI-like identifiers) have been followed.

The next steps are the following:

• transforming the thesaurus into a computation-
ally friendly form;

• creating the necessary identifiers for each term;
and

• creating the Metathesaurus-like files using the
identified synonymy, preferred names, and iden-
tifiers.

It is now necessary to format the data in the knowl-
edge source as line-oriented, pipe-separated (“|”)
ASCII text files. A simple sequential numbering of
the database records can serve as the basis for the
term and concept identifiers. We next present the for-
mat and semantics of the required tables. For more
information about the Metathesaurus tables, refer to
Section 4 of UMLS Reference Manual:

https://www.ncbi.nlm.nih.gov/books/
NBK9682/

Please note that the records in each table must be
grouped by the first identifier in each record.

Table Descriptions

MRCONSO.RRF

The MRCONSO table contains a row for each term
(not each concept) in the knowledge base; i.e., there

7.3. USING A NEW KNOWLEDGE SOURCE 7

should be exactly one row for each (unique) CUI-
SUI combination. Consider for example the groups
of synonymous terms listed in the Synonymy discus-
sion above. Each of the terms (Myocardial infarction;
Heart attack ; Infarction of heart ; Infarction, Myocar-
dial ; Myocardial Infarct , etc.) would therefore have
its own row in the MRCONSO table. See Table 2 for
a description of the MRCONSO table’s fields, sam-
ple values, and the fields’ semantics. Note that all
rows in the MRCONSO table that contain synony-
mous strings must have the same CUI; indeed iden-
tity of CUIs is precisely how synonymy is represented
in the UMLS Metathesaurus.

The UMLS Metathesaurus contains terms drawn
from a vast collection of different source vocabular-
ies. Although assembling terms from many different
vocabularies may not be necessary in all cases, the
MRCONSO table identifies the vocabulary source(s)
for a concept, term, and string.

The MRCONSO table contains a new element not
found in the two tables it replaces, MRCON and
MRSO which were used as input in the previous ver-
sion of the Data File Builder; this element is the AUI
field. The AUI or Atom Unique Identifer refers (or
identifies) a unique combination of a string assigned
to a concept and its vocabulary source. For datasets
containing one vocabulary the space of Atom identi-
fier would be a one-to-one mapping to String Unique
Identifers (SUIs) (See Table 2).

As stated before, the records in MRCONSO table
must be grouped by the first identifier in each record
in this case the concept identifier (CUI). All MR-
CONSO records referring to the same concept must
grouped together.

For example, the following are a subset the rows in
the 2013AA MRCONSO file for the synonyms of the
concept whose preferred name is Myocardial Infarc-
tion presented above:8

C0027051|ENG|P|L0027051|PF|S0064638|N|
A0089429||M0014340|D009203|MSH|MH|D009203|

8These are not all the MRCONSO rows for CUI C0027051;
also, the rows are indented for clarity; in the actual ASCII file,
all eight pipe-separated fields appear on a single line.

Myocardial Infarction|0|N|1792|
C0027051|ENG|P|L0027051|PF|S0064638|N|
A18061446||N0000002085||NDFRT|PT|
N0000002085|
Myocardial Infarction|0|N|1792|

C0027051|ENG|P|L0027051|PF|S0064638|N|
A21143843||||MEDLINEPLUS|ET|5|
Myocardial Infarction|0|N|1536|

C0027051|ENG|P|L0027051|PF|S0064638|N|
A7572328||C27996||NCI|PT|C27996|
Myocardial Infarction|0|N|1792|

C0027051|ENG|P|L0027051|PF|S0064638|Y|
A0089430||||MTH|PN|NOCODE|
Myocardial Infarction|0|N|1792|

C0027051|ENG|P|L0027051|VCW|S1916645|Y|
A1861262||||ICPC2P|PT|K75013|
Infarction;myocardial|3|N||

MRSTY.RRF

Every concept in the knowledge base should be as-
signed at least one Semantic Type; the MRSTY table
accordingly encodes the Semantic Type(s) associated
with each concept. Table 3 presents the MRSTY ta-
ble’s fields, sample values, and the fields’ semantics.

The actual MRSTY line represented in Table 3 is the
following:

C0027051|T047|B2.2.1.2.1|
Disease or Syndrome|AT32679180|3840|

MRSAT.RRF

The MRSAT table is used only to generate the
treecode data that support the MMI output option
of MetaMap. If you do not plan to generating MMI
output with MetaMap, it is not necessary to supply
a complete MRSAT file; an empty file will be suf-
ficient. Please see Section 8.3 below for information
about treecodes, which are used as a manageable rep-
resentation of the parent/child relations of MeSH. Al-
though the MetaMap algorithms make no direct use
of treecodes, this information has been found useful

8 7. CREATING A CUSTOM DATASET

for post-MetaMap processing. If you choose to gen-
erate treecodes for your custom dataset, use the table
below as a guide for the MRSAT file; the indication
of “not used” in the table means that an arbitrary
value in this column will work as well as the value
from the MRCONSO file. You should also set SAB
field to a mnemonic value such as “MED2009” con-
taining the year of the current UMLS release, or the
year in which your data are created.

C0027051|L0027051|S0052322|A0073387|AUI|
D009203|AT43773908||TERMUI|MSH|T027447|N||

C0027051|L0027051|S0064638|A0089429|AUI|
D009203|AT05237569||MED1951|NLM-MED|12|N||

C0027051|L0027051|S0064638|A0089429|AUI|
D009203|AT05260220||MED1951|NLM-MED|
*12|N||

C0027051|L0027051|S0064638|A0089429|AUI|
D009203|AT05282871||MED1952|NLM-MED|
181|N||

C0027051|L0027051|S0064638|A0089429|AUI|
D009203|AT05305522||MED1952|NLM-MED|
*181|N||

MRSAB.RRF

The MRSAB is used to generate a list of source abbre-
viations that are valid for a UMLS Knowledge Source
Release.

Sample MRSAB.RRF record:

C3529121|C1135584|MSH2013_2013_01_21|MSH|
Medical Subject Headings, 2013_2013_01_21|
MSH|2013_2013_01_21|||2013AA||
John Kilbourne, M.D.;Acting Head,
MeSH Section;
National Library of Medicine;
6701 Democracy Boulevard,;Suite 202Q;
Bethesda;MD;United States;20894;
(301)-496-1495;(301)-402-2002;
kilbourj@mail.nih.gov;
https://www.nlm.nih.gov/mesh/meshhome.html|
John Kilbourne, M.D.;Acting Head,

MeSH Section;
National Library of Medicine;
6701 Democracy Boulevard,;Suite 202Q;
Bethesda;MD;United States;20894;
(301)-496-1495;(301)-402-2002;
kilbourj@mail.nih.gov;
https://www.nlm.nih.gov/mesh/meshhome.html|
0|787946|335642|
FULL-MULTIPLE|
CE,DEV,DSV,EN,EP,HS,HT,MH,N1,NM,PCE,PEN,
PEP,PM,PXQ,QAB,QEV,QSV,TQ,XQ|
AN,AQL,CX,DC,DQ,DX,EC,FR,FX,HM,HN,II,LT,
MDA,MMR,MN,OL,PA,PI,PM,RN,RR,SC,SOS,SRC,
TERMUI,TH|ENG|UTF-8|Y|Y|MeSH|
Medical Subject Headings (MeSH);
National Library of Medicine;2013;
Bethesda, MD|

Note: the record has been broken into multiple lines
for readability.

See table 6 for explaination of MRSAB fields 9

SM.DB

The SM.DB file is a list of semantically related terms.
For additional information see:

https://www.ncbi.nlm.nih.gov/books/

NBK9680/

Assuming the MetamorphoSys release is in the direc-
tory $UMLS, the SM.DB file can be found at

Install/<version>/LEX/LEX_DB/SM.DB

Each row of the database is of the form

Index String|TERM1|SCA1|TERM2|SCA2

9Excerpted from Table 2. Source Information (File =
MRSAB) of 4.3.13 Source Information (File = MRSAB)
of Metathesaurus - Rich Release Format (ORF): https:

//www.ncbi.nlm.nih.gov/books/NBK9682/table/ch04.T.

source_information_file_mrsab/?report=objectonly

8.1. SETTING UP A WORKSPACE 9

meaning that the term TERM1 in syntactic category
SCA1 is semantically related to the term TERM2 in
syntactic category SCA2. Both terms are given in
base form. Some sample rows follow:

alar|alar|adj|wing|noun
ocular|ocular|adj|eye|noun
auditory area|auditory area|noun|
auditory center|noun

auditory area|auditory area|noun|
auditory cortex|noun

vomitive|vomitive|adj|emetic|adj
vomitive|vomitive|noun|emetic|noun
iridescent virus|iridescent virus|noun|
iridovirus|noun

typhloteritis|typhloteritis|noun|cecitis|noun

MRRANK.RRF

The MRRANK file ranks the precedence of records
by source vocabulary. The information provided by
this file is used during the UMLS filtering process to
determine which morphologically equivalent UMLS
records should be retained and which should be dis-
carded.

Some sample rows follow:

0839|MTH|PN|N|
0838|RXNORM|MIN|N|
0837|MSH|MH|N|
0836|MSH|TQ|N|
0835|MSH|PEP|N|
0834|MSH|PEN|N|
0833|MSH|EP|N|
0832|MSH|EN|N|
0831|MSH|XQ|N|
0830|MSH|PXQ|N|

8 Generating the Data Files

We assume at this point that the required tables
listed in Table 1 above on page 5 have been created.

MetaMap’s datafiles can be divided into five cate-
gories:

1. word-index files,

2. a treecode file,

3. variants files,

4. synonyms files, and

5. abbreviations and acronyms (AA) files.

In order to allow users to more easily review interme-
diate results, the ASCII files containing the data for
each data category are created in separate directo-
ries using a series of scripts. Users must set up their
workspace, navigate to each of the directories, and
run one or more scripts to generate the data files for
each category of data.

8.1 Setting up a Workspace

We begin this stage by completing the setup of the
workspace undertaken in Section 7.1 above. The
workspace will contain directories holding the inter-
mediate files and final output files, as well as copies
of the scripts that will be run.

To set up a new workspace:

1. First, run the BuildDataFiles program as fol-
lows:

${BASEDIR}/bin/BuildDataFiles

2. Next, when prompted, enter the name of the
workspace:

09_custom

3. If the path shown is the location of the source
data directory (umls), answer Yes; otherwise, en-
ter the correct workspace name, or move the
data to the proper location. See Section 7.1
above.

10 8. GENERATING THE DATA FILES

4. The process described in this document requires
the use of the lexicon distributed as part of
the MetaMap download. Lexical data from the
UMLS are used in the generation of variants and
become part of the data files. Here enter the
year of the lexicon to use (or simply accept the
default).

2009

If this script generates errors, it is likely that cer-
tain required files listed in Table 1 above are missing.
Any missing files should be created before running
the BuildDataFiles script.

8.2 Generating MetaWordIndex Files

The MetaWordIndex files contain the strings of the
Metathesaurus (or the Metathesaurus-like knowledge
source) indexed by the individual words they contain.
These files constitute the majority of the final data
files, and are generated by executing five scripts that
filter and reorganize the raw data (MRCONSO, MR-
SAT, etc.).

Workfiles:

The primary work of this first step is to strip the MR-
CONSO input file down to only the English strings—
those lines in the MRCONSO table whose second
field is ENG. Note that this processing must still be
done even if all the rows in a custom-crafted MR-
CONSO table have ENG as the second field.

To create the workfiles:

1. First, move to the workspace directory that con-
tains the umls directory:

cd $BASEDIR/sourceData/09_custom

2. Next, move to the 01metawordindex directory:

cd 01metawordindex

3. Then run the 01CreateWorkFiles script:

./01CreateWorkFiles

The script takes about 2 minutes to complete; as it
runs, it will generate some timing statistics and notes
about its progress, and remind you what to do next;

Suppression:

This second step marks the terms that have been
identified as problematic to MetaMap processing as
suppressible synonyms, so that they will be skipped
during the filtering step described below. The small
number of such problematic Metathesaurus strings
include numbers, single alphabetic characters, special
cases, and ambiguities. There are two parts to this
step, which together take about four minutes.

To run suppression:

1. First, as in the workfiles step immediately above,
move to the same 01metawordindex directory.

2. Then run the 02Suppress script:

./02Suppress

FilterPrep:

This third step extracts tables mapping cuis to
vocabularysource and semantic types from the
mrconso.suppressed file modified by 02Suppress;
the raw data file is described in Table 2 to create the
file mrconso.eng, which will contain data that will
be used in the filtering process described below. This
step takes about 9 minutes.

To run filtering:

1. First, as in the two preceding steps outlined
above, move to the same 01metawordindex di-
rectory.

2. Then run the 03FilterPrep script:

./03FilterPrep

Filtering:

The filtering step uses studies previously performed
on the full Metathesaurus dealing with how to

8.2. GENERATING METAWORDINDEX FILES 11

• process NEC/NOS,

• handle parentheticals, and

• handle possessives.

There are three forms of filtering:

1. Manual Filtering, which excludes those strings
marked for suppression in the Suppression step
above.

2. Lexical Filtering, the most benign type of filter-
ing, which consists of removing strings mapped
to a given concept that are effectively the same
as another string for that concept.

3. Syntactic Filtering, the final filtering step, which
excludes many long or complex phrases. Syntac-
tic filtering uses MetaMap’s syntactic analyzer
to parse Metathesaurus(-like) strings and deter-
mine their syntactic complexity. Because normal
MetaMap processing analyzes text one phrase
at a time, it is highly unlikely that a concept
represented by a complex Metathesaurus string
consisting of multiple phrases will ever be iden-
tified. Most strings consisting of more than one
simple phrase are therefore filtered out. Phrases
containing certain simple prepositional phrases,
e.g., Cancer of the lung , Wax in ear , Homes for
the aged are exempted from this syntactic filter-
ing.

The extent of filtering that is performed is deter-
mined by the model to be created (strict or relaxed).
Broadly speaking, MetaMap can be used in two ways:
constrained semantic processing, and less constrained
browsing, which casts a wider net and places more
emphasis on recall than precision. To support these
two modes of processing, separate data models dif-
fering in the degree of filtering can be created:

• The Strict Model applies all forms of filtering
described above; this view is most appropriate
for semantic processing where the greater accu-
racy is desired.

• The Relaxed Model applies only manual and
lexical filtering (and not syntactic filtering),
thereby providing access to a far broader range
of Metathesaurus(-like) strings, and improving
recall, albeit at the of cost of slower processing.

At least one the models must be created; the strict
model is probably the more useful of the two, but
both can be created in succession.

To create a filtered model:

1. As described in the previous steps, first move to
the 01metawordindex directory.

2. Then, determine the more suitable model
for the intended processing, and run either
04FilterStrict or 04FilterRelaxed, as ap-
propriate.

./04FilterStrict

or

./04FilterRelaxed

Note: If using 04FilterStrict, be sure that the
SKR/MedPOST tagger is running; to run the
tagger, move to the public_mm directory and in-
voke

./bin/skrmedpostctl start

The two 04FilterStrict and 04FilterRelaxed
scripts run a program to perform the desired filtering
of the mrconso.eng file created by the 03FilterPrep
script, as described on page 10. The filtering scripts
then generate the file

Filter/mrconso.eng.strict

or

Filter/mrconso.eng.relaxed

12 8. GENERATING THE DATA FILES

from the intermediate mrconso.eng.strict or
mrconso.eng.relaxed file.

Finally, the scripts create a directory for the target
model (model.strict or model.relaxed) that con-
tains the file mrcon.filtered, which is simply a sym-
bolic link to either Filter/mrconso.eng.strict or
Filter/mrconso.eng.relaxed.

It is possible—even desirable—to generate both
the strict and relaxed models by running the two
04FilterStrict and 04FilterRelaxed scripts one
after the other.

Modifying Semantic Type Translations:

If the MRSTY file does not contain any non-UMLS Se-
mantic Types, there is nothing to do in this step;
otherwise, the file st.raw, located in

cd $BASEDIR/data/dfbuilder/<YEAR>

will need to be modified. The st.raw file contains
lines of the form

SemType Full Name|SemType Abbreviation

e.g.,

Body Part, Organ, or Organ Component|bpoc

Disease or Syndrome|dsyn

Injury or Poisoning|inpo

Simply add a line to the st.raw file for each new
Semantic Type.

Generating MWI Files:

This final step for creating the MetaWordIndex files
produces the .txt files, which are ultimately loaded
into the database used by MetaMap. A Java pro-
gram extracts word information from the filtered
MRCONSO file and builds the necessary database in-
dex files. This step takes approximately 15 minutes
for each of the filter models created.

To generate MWI files:

1. As always, navigate to the 01metawordindex di-
rectory.

2. Then run the 05GenerateMWIFiles script:

./05GenerateMWIFiles

If you subsequently decide to generate a second
model, you may run the other 04Filter script and
then rerun this step. 05GenerateMWIFiles will gen-
erate the MetaWordIndex files only once for each
model.

8.3 Generating the Treecode Files

Treecodes represent the attribute of MeSH terms that
encode their hierarchical relationships to other terms.
The treecode file is not directly used in MetaMap
processing, but ensures that treecode information is
included in MetaMap’s output. This is the only step
that uses the UMLS MRSAT file.

To generate the treecodes file:

1. Move to the 02treecodes directory of your
workspace. If you just finished generating the
meta word index files, you can type:

cd ../02treecodes

2. Run the 01GenerateTreecodes script:

./01GenerateTreecodes

This script takes only about 3 minutes, and generates
the file treecodes.txt.

8.4 Generating the Variants Files

MetaMap variants are linguistic variants of base
words and terms (variant generators) that have been
computed using a variety of generation methods, in-
cluding

8.5. GENERATING SYNONYMS 13

• Inflectional variants:

– heart → hearts

– treat → treating

– cold → colder

• Derivational variants:

– treat → treatment

– cure → curable

– fatal → fatality

• Synonyms:

– pyrosis ↔ heartburn

– tylenol ↔ acetaminophen

– precancerous ↔ premalignant

• Acronyms and abbreviations and their expan-
sions:

– vt ↔ ventricular tachycardia

– ama ↔ american medical association

– vldl ↔ very low density lipoprotein

• Spelling variants:

– apnea ↔ apnoea

– cardioactive ↔ cardio-active

– leukemia ↔ leukaemia

and useful combinations of all the above. Every
derivation of a variant from its generator carries
an associated score measuring the variant’s distance
from its generator. Once the variants have been com-
puted, results are filtered so that all table entries con-
tain strings actually occurring in the Metathesaurus.

Variant Generation is a computationally intensive
process because variants are generated from several
hundred thousand generators. This process typically
takes requires several hours. Be patient!

To generate variants:

1. First, move to the 03Variants directory in the
workspace. If you just finished generating the
treecode file, you can type simply:

cd ../03Variants

2. Then run the 01GenerateVariants script:

./01GenerateVariants

Because of the computational intensity of the
01GenerateVariants script, external events may re-
sult in abnormal termination of the processing before
completion, which can be recognized by the messages
identifying the next step.

8.5 Generating Synonyms

MetaMap’s synonyms database is closely modeled af-
ter the SM.DB UMLS datafile included in the UMLS
download.

To generate synonyms:

1. Move to the 04synonyms directory of your
workspace. If you just finished generating the
variants files, you can type simply:

cd ../04synonyms

2. Run the 01GenerateSynonyms script:

./01GenerateSynonyms

8.6 Generating Acronyms and
Abbreviations

Acronyms and abbreviations (AAs)12 are very useful
for improving recall in acronym-laden domains such
as biomedical literature and clinical texts. For ex-
ample, consider Medline’s PMID 15387473, whose ti-
tle is Non-exercise activity thermogenesis (NEAT).
In that title (and in the first sentence of the ab-
stract), MetaMap recognizes the string NEAT as an
acronym for non-exercise activity thermogenesis. In

12For example, AAs is an acronym for Acronyms and Ab-
breviations!

14 10. TROUBLESHOOTING

the remainder of the abstract, the string NEAT ap-
pears no fewer than ten additional times; because of
MetaMap’s ability to handle AAs, each of those oc-
currences of NEAT is correctly interpreted to mean
non-exercise activity thermogenesis.

To generate Acronyms and Abbreviations:

1. First move to the 05abbrAcronyms directory of
your workspace. As before, if you just finished
generating the synonyms file, you can type sim-
ply:

cd ../05abbrAcronyms

2. Then run the 01GenerateAbbrAcronyms script:

./01GenerateAbbrAcronyms

9 Data Set Creation and Load

This final stage (whew!) creates the final version
of the datafiles, and loads them into a Berkeley DB
database used by MetaMap just as it would use one
of the standard Berkeley DB databases available in
the normal MetaMap download.

To create a data set and load it into Berkeley DB:

1. First, run the LoadDataFiles program as fol-
lows:

${BASEDIR}/bin/LoadDataFiles

2. Next, when prompted, enter the name of the
workspace:

09_custom

3. The script then displays the full path for the
workspace. If it is correct, simply hit return; if
not, enter “no” and try again.

4. Next, the script checks the workspace to see
which model(s) have been built, and asks which
one(s) to load. This step should take about a
half hour.

The new dataset will be deposited in the di-
rectory $BASEDIR/DB/BDB4/DB.09_custom.base
and $BASEDIR/DB/BDB4/DB.09_custom.strict or
$BASEDIR/DB/BDB4/DB.09_custom.relaxed. A
complete data set contains at least two subdirec-
tories: The base subdirectory holds files shared
by the strict and relaxed models, and the strict
and relaxed directories hold all model-specific
files. Figure 1 below shows the shared files and the
model-specific files for the strict model.

If an error is generated by the LoadDataFiles script
(especially “File not found”), likely causes include an
unnoticed failure in one of the previous steps or the
omission of one of the steps altogether. Consult the
table in Section 10 below for more information about
error recovery.

If no errors were generated, the Data File Builder
suite has completed all processing. Congratulations!
Users are now referred to Section 11 below for an
explanation of how to point MetaMap to the newly
created database.

10 Troubleshooting

When a data file is missing: If a missing file is
reported, you should go to the directory where the
missing file should be, and (re-)run the script that
creates it. If intermediate files exist in the directory,
check the output from the script carefully for error
messages.

When an error is reported: Because errors can
have such varied etiology, we can offer only general
suggestions; the specific error message may offer some
clues as to what might have gone wrong. If not, we
recommend cleaning up the working directory for the
step that failed, and simply running it again.

To clean up a working directory: Using the in-
formation from Table 7, identify the directory used

15

for the script that failed. The directory is often the
one containing the script in question, but sometimes
it is the one containing helper scripts or programs.
In that working directory, remove all files that are
not input files. For 03variants, however, remove
the subdirectories.

To regenerate MWI files: If the Data File Builder
scripts are re-run, the 05GenerateMWIFiles script
will skip over those models for which data files had al-
ready been generated. To force 05GenerateMWIFiles
to regenerate MWI files, follow these steps:

To regenerate files for the strict model:

1. Go to the model directory.

01metawordindex/model.strict

2. 2 Remove the sui_cui.txt file:

rm sui_cui.txt

3. Make the other files writeable.

chmod u+w *.*.*

4. Return to MetaWordIndex directory.

cd ../

5. Rerun the ./05GenerateMWIFiles script.

./05GenerateMWIFiles

To regenerate files for the relaxed model, simply fol-
low the above instructions, substituting relaxed for
strict.

If you need to completely start over: If a prob-
lem with the input data has surfaced, and you need
to rerun the entire family of Data File Builder scripts
ab initio, it is possible to (re-)run everything with a
single command.

To run all Data File Builder steps at once:

1. Clean up the model directories, as described im-
mediately above.

2. Run the top-level script, which calls all the other
previously described scripts:

$BASEDIR/bin/rundatafiles.sh

3. When prompted to specify the dataset, simply
hit Enter to specify the default.

4. You will also be asked which model to generate.
(The strict model is the default.) Enter ’yes’ for
the desired model(s).

11 Using MetaMap

This section gives a brief overview of using MetaMap
with a custom data set. More complete information
on using MetaMap and its options is available at

https://metamap.nlm.nih.gov

The LoadDataFiles program created a new
MetaMap configuration file that sets options to
point MetaMap to the new database and the new
variants table.

To run MetaMap:

1. Move to the top level directory in your MetaMap
installation:

cd <parent directory>/public_mm

2. Run MetaMap using a input file of text to be
processed (e.g., the file used to test the MetaMap
installation):

./bin/metamap -V 09_custom
resources/test.txt custom.out

Note: The -A option (the default) specifies the
strict model; use -C to specify the relaxed model
instead.

16 11. USING METAMAP

3. Examine the custom.out file to see the MetaMap
output generated using with your data set.

diff resources/test.out custom.out

This command will probably return some differ-
ences because your newly generated custom data
files are different from the data in the MetaMap
distribution. We recommend ensuring that these
differences are reasonable and explainable.

Fieldname Sample
Value

Description

CUI (Concept
Unique ID)

C0027051 Letter + 7 or
more digits

Language of
Term

ENG Fixed

Term Status P or S P for preferred
name, S for non-
preferred names

LUI (Lexical
Unique ID)

L0027051 Letter + 7 or
more digits (not
used)

String Type PF Fixed

SUI (String
Unique ID)

S0064638 Letter + 7 or
more digits

ISPREF (Is
Preferred
Name)

N Y or N

AUI (Atom
Unique ID)

A0089429 Letter + 7 or
more digits, there
is one AUI for
each unique com-
bination of String
and Vocabulary
Source

SAUI (Source
Atom Unique
ID)

determined by
source

SCUI (Source
Concept ID)

M0014340 determined by
source

SDUI (Source
Descriptor
ID)

D009203 determined by
source

SAB (Abbre-
viated Source
Name)

MSH Alpha String

TTY (Term
Type)

MH determined by
source

CODE
(Source
Asserted Id)

D009203 determined by
source

STR (String) Myocardial
Infarction

The term string

SRL (Source
Restriction
Level)

0 digit

SUPPRESS N Y if suppressed or
N

CVF (Content
View Flag)

1792 digits

Table 2: MRCONSO.RRF Fields

17

Fieldname Value Description

CUI C0027051 Same as MR-
CONSO.RRF

TUI T047 Unique ID for Se-
mantic Type

STN B2.2.1.2.1 Semantic Type
tree number

STY Disease or
Syndrome

Name of semantic
type

ATUI AT32679180 Unique Identifier
for attribute

CVF 3840 Content View
Flag

Table 3: MRSTY.RRF Fields

Fieldname Value Source

CUI C0027051 Same as MR-
CONSO

LUI L0027051 Same as MR-
CONSO (not
used)

SUI S0052322 Same as MR-
CONSO (not
used)

METAUI A0073387 Metathesaurus
atom identifier
(will have a
leading A) or
Metathesaurus
relationship iden-
tifier (will have
a leading R) or
blank if it is a
concept attribute.

STYPE AUI identifier to which
the attribute, i.e.
AUI, CODE,
CUI, RUI, SCUI,
SDUI.

CODE D009203 Most useful
source asserted
identifier

ATUI AT43773908 Unique identifier
for attribute

SATUI Source asserted
attribute iden-
tifier (optional
- present if it
exists)

ATN TERMUI Attribute name.
Possible values
appear in MR-
DOC.RRF and
are described on
the Attribute
Names page.

SAB MSH Abbreviated
source name
(SAB).

ATV T027447 Attribute Value

SUPPRESS N Suppressible flag.
Values = O, E, Y,
or N.

CVF Content View
Flag.

Table 4: MRSAT Fields

18 11. USING METAMAP

Fieldname Value Description

RANK 0624 Numeric order of precedence,
higher value wins

SAB AIR Abbreviated source name
(SAB). 10

TTY SY Abbreviation for term type
in source vocabulary, 11

SUPPRESS N Flag indicating that this
SAB and TTY will create a
TS=s MRCONSO entry; see
TS (Term Status) in Table
??

Table 5: MRRANK Fields

DB/DB.normal.2008 level0.base:

config meta_mesh_tc_opt.txt

config.01 nlsaa

config.02 nls_aa.txt

config.common nlsaau

config.vars nls_aau.txt

cuisourceinfo sab_rv

cui_sourceinfo.txt sab_rv.txt

cuisrc sab_vr

cui_src.txt sab_vr.txt

meshmh syns

mesh_mh_opt.txt syns.txt

meshtcrelaxed vars

mesh_tc_relaxed.txt varsan

meshtcstrict varsan.txt

mesh_tc_strict.txt varsanu

metamesh varsanu.txt

meta_mesh_opt.txt vars.txt

metameshtc varsu

meta_mesh_tc_opt.txt varsu.txt

DB/DB.normal.2008 level0.strict:

all_words first_words_of_one

all_words_counts first_words_of_one.txt

all_words_counts.txt first_words_of_two

all_words.txt first_words_of_two.txt

conceptcui first_words.txt

concept_cui.txt meshmh

conceptst meshtcrelaxed

concept_st.txt meshtcstrict

config metamesh

cuiconcept metameshtc

cui_concept.txt nlsaa

cuisourceinfo nlsaau

cuisrc sab_rv

cuist sab_vr

cui_st.txt sui_cui

cui_sui.txt sui_cui.txt

first_words sui_nmstr_str.txt

first_wordsb suistrings

first_wordsb_counts syns

first_wordsb_counts.txt vars

first_wordsb.txt varsan

first_words_counts varsanu

first_words_counts.txt varsu

cui_sts_source.txt

Figure 1: Contents of a typical MetaMap dataset

19

Bibliography

[1] Alan R Aronson, Franois-Michel Lang An overview of MetaMap: historical perspective and
recent advances, Journal of the American Medical Informatics Association, 2010;17:229-236,
doi:10.1136/jamia.2009.002733, http://jamia.bmj.com/content/17/3/229.long

[2] Unified Medical Language System (UMLS), National Library of Medicine, https://www.nlm.nih.gov/
research/umls/knowledge_sources/metathesaurus/index.html

[3] UMLS Reference Manual [Internet], Metathesaurus - Rich Release Format (RRF), National Library of
Medicine, https://www.ncbi.nlm.nih.gov/books/NBK9685/

20 BIBLIOGRAPHY

Fieldname Full Name Description
VCUI CUI CUI of the versioned SRC concept for a source
RCUI Root CUI CUI of the root SRC concept for a source
VSAB Versioned Source Abbreviation The versioned source abbreviation for a source e.g.,

MSH2003 2002 10 24
RSAB Root Source Abbreviation The root source abbreviation for a source e.g., MSH
SON Official Name The official name for a source
SF Source Family The source family for a source
SVER Version The source version e.g., 2001
VSTART Valid Start Date For A Source The date a source became active, e.g., 2004 04 03
VEND Valid End Date For A Source The date a source ceased to be active, e.g., 2003 05 10
IMETA Meta Insert Version The version of the Metathesaurus in which a source first appeared,

e.g., 2001AB
RMETA Meta Remove Version The version of the Metathesaurus in which a source last appeared,

e.g., 2001AC
SLC Source License Contact The source license contact information
SCC Source Content Contact The source content contact information
SRL Source Restriction Level 0, 1, 2, 3, 4, 9 - explained in the License Agreement
TFR Term Frequency The number of terms for this source in MRCONSO, e.g., 12343
CFR CUI Frequency The number of CUIs associated with this source, e.g., 10234
CXTY Context Type The type of contexts for this source. Values are FULL, FULL-

MULTIPLE, FULL-NOSIB, FULL-NOSIB-MULTIPLE, FULL-
MULTIPLE-NOSIB-RELA, null.

TTYL Term Type List Term type list from source, e.g., MH, EN, PM, TQ
ATNL Attribute Name List The attribute name list (from MRSAT), e.g., MUI, RN, TH
LAT Language The language of the source
CENC Character Encoding All UMLS content is provided in Unicode, encoded in UTF-8.

MetamorphoSys will allow exclusion of extended characters with
some loss of information. Transliteration to other character encod-
ings is possible but not supported buy NLM; for further informa-
tion, see http://www.unicode.org.

CURVER Current Version A Y or N flag indicating whether or not this row corresponds to
the current version of the named source

SABIN Source in Subset A Y or N flag indicating whether or not this row is represented
in the current MetamorphoSys subset. Initially always Y where
CURVER is Y, but later is recomputed by MetamorphoSys.

Table 6: MRSAB Fields

21

Script Helpers Input Files Output Files
BuildDataFiles builddatafiles.sh public mm/dfbuilder/scripts/* (The workspace)

public mm/data/dfbuilder/*

01metawordindex
01CreateWorkFiles (none) umls/MRCONSO mrconso.eng.0

02Suppress Suppress/ mrconso.eng.0 mrcon.eng

0Suppress1

0Suppress2

03FilterPrep (none) mrconso.eng mrconso.eng

04Filter* Filter/ExpandIndex mrconso.eng mrconso.eng.<model>
05GenerateMWIFiles Generate/ Filter/mrconso.eng.<model> model.*/*.txt

0Generate1

0Generate2

glean mrconso (See list in Figure 1 for individual
file names)

02treecodes
01GenerateTreecodes (none) MRCONOS.mesh treecodes.txt

umls/MRSAT

../01metawordindex/mrconso.eng

Filter/mrconso.eng.*

03variants
01GenerateVariants (many) ../01metawordindex/model.*/ vars*.txt

all words.txt

04synonyms
01GenerateSynonyms write syns.perl ../umls/SM.DB syns.txt

write syns syn nls db.txt

05abbrAcronyms
01GenerateAbbrAcronyms extract addr perl.09 public mm/lexicon/data/ nls aa.txt

write aas.perl lexiconStatic<year>
lexiconStatic<year>IndByEui.dbx

lexiconStatic<year>IndByInfl.dbx

LoadDataFiles loaddatafiles.sh ../01metawordindex/model.*/ public mm/DB/BDB4/

*.txt public mm/DB/BDB4/

create bulk DB.normal.<name>.base

public mm/DB/BDB4/

DB.normal.<name>.<model>

Table 7: Data File Builder Overview

